Marquet F, Pernot M, Aubry J-F, Montaldo G, Marsac L, Tanter M, Fink M
Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII, UMR CNRS 7587, 10 rue Vauquelin, 75005 Paris, France.
Phys Med Biol. 2009 May 7;54(9):2597-613. doi: 10.1088/0031-9155/54/9/001. Epub 2009 Apr 8.
A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.
一种用于经颅超声脑组织消融的非侵入性方案在体外进行了研究和验证。颅骨在相位和幅度上都会引起强烈的像差,导致波束形状严重退化。利用先前获取的颅骨结构的三维计算机断层扫描(CT)来对颅骨引起的畸变进行自适应校正。这些CT扫描数据被用作全波传播方程的时域有限差分(FDTD)模拟的输入参数。通过数值计算推导与目标位置和超声治疗阵列相关的脉冲响应,从而提供一个虚拟时间反转镜。然后将该脉冲响应进行时间反转,并由一个与CT扫描采集期间使用的参考系完全相同的治疗阵列进行实验性发射。使用一个由300个发射元件组成的阵列在1MHz中心频率下工作,对猴子和人类颅骨标本进行了体外实验。这些实验表明,超声束在目标位置精确重新聚焦,定位误差低于0.7mm。这种经颅自适应聚焦程序的完全验证为体内动物和人类经颅高强度聚焦超声(HIFU)研究铺平了道路。