Suppr超能文献

植物作为生产疫苗抗原的生物反应器。

Plants as bioreactors for the production of vaccine antigens.

作者信息

Tiwari Siddharth, Verma Praveen C, Singh Pradhyumna K, Tuli Rakesh

机构信息

Plant Molecular Biology and Genetic Engineering Division, National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226001, U.P., India.

出版信息

Biotechnol Adv. 2009 Jul-Aug;27(4):449-67. doi: 10.1016/j.biotechadv.2009.03.006. Epub 2009 Apr 6.

Abstract

Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through 'naturalized bioreactors' may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.

摘要

植物已被确定为用于商业生产疫苗抗原的有前景的表达系统。在I期临床试验中,已发现几种植物源疫苗抗原是安全的,并能诱导足够高的免疫反应。因此,包括可食用植物部分在内的转基因植物被认为是生产疫苗和通过种植实现经济规模化扩大生产的极佳替代方案。对植物分子生物学的深入理解以及随之而来的基因工程技术的改进,已促使人们设计出在植物中高水平表达疫苗抗原的方法。在过去十年中,已经研究了几种高效的基于植物的表达系统,并且在不同植物组织中表达了包括植物源疫苗抗原在内的100多种重组蛋白。据估计,通过在可食用豆类(如花生或大豆)的种子中表达抗原,有可能从一英亩作物中获得足以接种数百万个体的抗原。在不久的将来,通过“天然生物反应器”开发的大量蛋白质产品可能会上市。这些技术的进一步改进工作主要应针对基于植物的标准化黏膜和可食用疫苗的验证和适用性、监管药理学、制剂以及商业可行的GLP方案的开发。本文综述了利用植物开发疫苗抗原领域的当前发展状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06d7/7126855/b897da6b860e/gr1.jpg

相似文献

1
Plants as bioreactors for the production of vaccine antigens.
Biotechnol Adv. 2009 Jul-Aug;27(4):449-67. doi: 10.1016/j.biotechadv.2009.03.006. Epub 2009 Apr 6.
2
Research advances on transgenic plant vaccines.
Yi Chuan Xue Bao. 2006 Apr;33(4):285-93. doi: 10.1016/S0379-4172(06)60053-X.
3
The mucosal immune response to plant-derived vaccines.
Pharm Res. 2010 Oct;27(10):2040-2. doi: 10.1007/s11095-010-0168-9. Epub 2010 May 14.
4
Mucosal immunization using recombinant plant-based oral vaccines.
Methods. 2006 Feb;38(2):150-7. doi: 10.1016/j.ymeth.2005.09.013.
5
Plant-based vaccines for potential human application: a review.
Hum Vaccin. 2009 Nov;5(11):738-44. doi: 10.4161/hv.5.11.9879. Epub 2009 Nov 23.
6
Recent Development and Future Prospects of Plant-Based Vaccines.
Curr Drug Metab. 2017;18(9):831-841. doi: 10.2174/1389200218666170711121810.
7
8
Transgenic plants as vaccine production systems.
Trends Biotechnol. 1995 Sep;13(9):388-92. doi: 10.1016/S0167-7799(00)88986-6.
9
Transgenic crops for the production of recombinant vaccines and anti-microbial antibodies.
Hum Vaccin. 2011 Mar;7(3):367-74. doi: 10.4161/hv.7.3.14303. Epub 2011 Mar 1.
10
Expression systems and developments in plant-made vaccines.
Immunol Cell Biol. 2005 Jun;83(3):271-7. doi: 10.1111/j.1440-1711.2005.01336.x.

引用本文的文献

1
Plant-based edible vaccines: Can cholera be the case study in Africa?
J Genet Eng Biotechnol. 2025 Sep;23(3):100527. doi: 10.1016/j.jgeb.2025.100527. Epub 2025 Jun 23.
3
Molecular Farming for Immunization: Current Advances and Future Prospects in Plant-Produced Vaccines.
Vaccines (Basel). 2025 Feb 15;13(2):191. doi: 10.3390/vaccines13020191.
4
An endogenous promoter discovered in duckweed: a promising transgenic tool for plants.
Front Plant Sci. 2024 Apr 3;15:1368284. doi: 10.3389/fpls.2024.1368284. eCollection 2024.
5
Research Progress in Heterologous Crocin Production.
Mar Drugs. 2023 Dec 28;22(1):22. doi: 10.3390/md22010022.
7
Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants.
Molecules. 2021 Jul 1;26(13):4032. doi: 10.3390/molecules26134032.
8
Antibodies induced by oral immunization of mice with a recombinant protein produced in tobacco plants harboring epitopes.
Plant Cell Tissue Organ Cult. 2021;147(1):85-96. doi: 10.1007/s11240-021-02107-1. Epub 2021 Jul 10.
9
Expression of BMP2-Hydrophobin fusion protein in the tobacco plant and molecular dynamic evaluation of its simulated model.
Plant Biotechnol Rep. 2021;15(3):309-316. doi: 10.1007/s11816-021-00684-3. Epub 2021 Jun 11.
10
Principles and Challenges in anti-COVID-19 Vaccine Development.
Int Arch Allergy Immunol. 2021;182(4):339-349. doi: 10.1159/000514225. Epub 2021 Feb 1.

本文引用的文献

3
Plants as biofactories for the production of subunit vaccines against bio-security-related bacteria and viruses.
Vaccine. 2009 May 26;27(25-26):3463-6. doi: 10.1016/j.vaccine.2009.01.120. Epub 2009 Feb 2.
4
Mechanism of action of clinically approved adjuvants.
Curr Opin Immunol. 2009 Feb;21(1):23-9. doi: 10.1016/j.coi.2009.01.004. Epub 2009 Feb 24.
6
Immunological assessment of plant-derived avian flu H5/HA1 variants.
Vaccine. 2009 Feb 25;27(9):1289-92. doi: 10.1016/j.vaccine.2008.12.050. Epub 2009 Jan 20.
7
New horizons in adjuvants for vaccine development.
Trends Immunol. 2009 Jan;30(1):23-32. doi: 10.1016/j.it.2008.09.006. Epub 2008 Dec 6.
8
Plant molecular farming: opportunities and challenges.
Crit Rev Biotechnol. 2008;28(3):153-72. doi: 10.1080/07388550802046624.
9
Recent progress in the development of plant derived vaccines.
Expert Rev Vaccines. 2008 Oct;7(8):1173-83. doi: 10.1586/14760584.7.8.1173.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验