Suppr超能文献

兴奋性混合网络中锁相的预测:在模式生成网络中,兴奋不像抑制那样可靠地促进锁相。

Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition.

作者信息

Sieling Fred H, Canavier Carmen C, Prinz Astrid A

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Rollins Research Center, 1510 Clifton Rd. NE, Atlanta, GA 30322, USA.

出版信息

J Neurophysiol. 2009 Jul;102(1):69-84. doi: 10.1152/jn.00091.2009. Epub 2009 Apr 8.

Abstract

Phase-locked activity is thought to underlie many high-level functions of the nervous system, the simplest of which are produced by central pattern generators (CPGs). It is not known whether we can define a theoretical framework that is sufficiently general to predict phase-locking in actual biological CPGs, nor is it known why the CPGs that have been characterized are dominated by inhibition. Previously, we applied a method based on phase response curves measured using inputs of biologically realistic amplitude and duration to predict the existence and stability of 1:1 phase-locked modes in hybrid networks of one biological and one model bursting neuron reciprocally connected with artificial inhibitory synapses. Here we extend this analysis to excitatory coupling. Using the pyloric dilator neuron from the stomatogastric ganglion of the American lobster as our biological cell, we experimentally prepared 86 networks using five biological neurons, four model neurons, and heterogeneous synapse strengths between 1 and 10,000 nS. In 77% of networks, our method was robust to biological noise and accurately predicted the phasic relationships. In 3%, our method was inaccurate. The remaining 20% were not amenable to analysis because our theoretical assumptions were violated. The high failure rate for excitation compared with inhibition was due to differential effects of noise and feedback on excitatory versus inhibitory coupling and suggests that CPGs dominated by excitatory synapses would require precise tuning to function, which may explain why CPGs rely primarily on inhibitory synapses.

摘要

锁相活动被认为是神经系统许多高级功能的基础,其中最简单的功能是由中枢模式发生器(CPG)产生的。目前尚不清楚我们是否能够定义一个足够通用的理论框架来预测实际生物CPG中的锁相,也不清楚为何已被表征的CPG以抑制为主导。此前,我们应用了一种基于使用具有生物学现实幅度和持续时间的输入测量的相位响应曲线的方法,来预测在一个生物神经元和一个模型爆发神经元通过人工抑制性突触相互连接的混合网络中1:1锁相模式的存在和稳定性。在此,我们将这种分析扩展到兴奋性耦合。我们以美洲龙虾口胃神经节中的幽门扩张神经元作为我们的生物细胞,使用五个生物神经元、四个模型神经元以及强度在1至10,000 nS之间的异质突触强度,通过实验制备了86个网络。在77%的网络中,我们的方法对生物噪声具有鲁棒性,并能准确预测相位关系。在3%的网络中,我们的方法不准确。其余20%由于违反了我们的理论假设而无法进行分析。与抑制相比,兴奋的高失败率是由于噪声和反馈对兴奋性与抑制性耦合的不同影响所致,这表明由兴奋性突触主导的CPG需要精确调谐才能发挥功能,这可能解释了为何CPG主要依赖抑制性突触。

相似文献

5
Synchronization in hybrid neuronal networks of the hippocampal formation.海马结构混合神经元网络中的同步。
J Neurophysiol. 2005 Mar;93(3):1197-208. doi: 10.1152/jn.00982.2004. Epub 2004 Nov 3.
7
Oscillations and oscillatory behavior in small neural circuits.小型神经回路中的振荡与振荡行为
Biol Cybern. 2006 Dec;95(6):537-54. doi: 10.1007/s00422-006-0125-1. Epub 2006 Dec 7.

引用本文的文献

5
Synchronization of delayed coupled neurons in presence of inhomogeneity.存在不均匀性时延迟耦合神经元的同步
J Comput Neurosci. 2014 Feb;36(1):55-66. doi: 10.1007/s10827-013-0461-9. Epub 2013 Jun 7.
6
Phase response theory extended to nonoscillatory network components.相位响应理论扩展到非振荡网络组件。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056208. doi: 10.1103/PhysRevE.85.056208. Epub 2012 May 14.

本文引用的文献

6
Organization of mammalian locomotor rhythm and pattern generation.哺乳动物运动节律与模式生成的组织
Brain Res Rev. 2008 Jan;57(1):134-46. doi: 10.1016/j.brainresrev.2007.08.006. Epub 2007 Sep 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验