Sadeghi S, Valizadeh A
Institute for Advanced Studies in Basic Sciences (IASBS), P. O. Box 45195-1159, Zanjan, Iran.
J Comput Neurosci. 2014 Feb;36(1):55-66. doi: 10.1007/s10827-013-0461-9. Epub 2013 Jun 7.
In principle, two directly coupled limit cycle oscillators can overcome mismatch in intrinsic rates and match their frequencies, but zero phase lag synchronization is just achievable in the limit of zero mismatch, i.e., with identical oscillators. Delay in communication, on the other hand, can exert phase shift in the activity of the coupled oscillators. In this study, we address the question of how phase locked, and in particular zero phase lag synchronization, can be achieved for a heterogeneous system of two delayed coupled neurons. We have analytically studied the possibility of inphase synchronization and near inphase synchronization when the neurons are not identical or the connections are not exactly symmetric. We have shown that while any single source of inhomogeneity can violate isochronous synchrony, multiple sources of inhomogeneity can compensate for each other and maintain synchrony. Numeric studies on biologically plausible models also support the analytic results.
原则上,两个直接耦合的极限环振荡器可以克服固有速率的不匹配并使它们的频率匹配,但零相位滞后同步仅在零不匹配的极限情况下才能实现,即使用相同的振荡器。另一方面,通信延迟会在耦合振荡器的活动中产生相移。在本研究中,我们探讨了对于两个具有延迟耦合的神经元的异质系统,如何实现锁相,特别是零相位滞后同步的问题。我们已经分析研究了神经元不相同或连接不完全对称时同相同步和近同相同步的可能性。我们已经表明,虽然任何单一的不均匀性来源都可能破坏等时同步,但多个不均匀性来源可以相互补偿并维持同步。对具有生物学合理性的模型的数值研究也支持了分析结果。