Polley Daniel B, Hillock Andrea R, Spankovich Christopher, Popescu Maria V, Royal David W, Wallace Mark T
Vanderbilt Bill Wilkerson Center for Otolaryngology and Communication Sciences, Department of Hearing and Speech Sciences, Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical School, USA.
J Am Acad Audiol. 2008 Nov-Dec;19(10):780-98. doi: 10.3766/jaaa.19.10.6.
The functional architecture of sensory brain regions reflects an ingenious biological solution to the competing demands of a continually changing sensory environment. While they are malleable, they have the constancy necessary to support a stable sensory percept. How does the functional organization of sensory brain regions contend with these antithetical demands? Here we describe the functional organization of auditory and multisensory (i.e., auditory-visual) information processing in three sensory brain structures: (1) a low-level unisensory cortical region, the primary auditory cortex (A1); (2) a higher-order multisensory cortical region, the anterior ectosylvian sulcus (AES); and (3) a multisensory subcortical structure, the superior colliculus (SC). We then present a body of work that characterizes the ontogenic expression of experience-dependent influences on the operations performed by the functional circuits contained within these regions. We will present data to support the hypothesis that the competing demands for plasticity and stability are addressed through a developmental transition in operational properties of functional circuits from an initially labile mode in the early stages of postnatal development to a more stable mode in the mature brain that retains the capacity for plasticity under specific experiential conditions. Finally, we discuss parallels between the central tenets of functional organization and plasticity of sensory brain structures drawn from animal studies and a growing literature on human brain plasticity and the potential applicability of these principles to the audiology clinic.
感觉脑区的功能架构反映了一种巧妙的生物学解决方案,以应对不断变化的感觉环境的相互竞争的需求。虽然它们具有可塑性,但它们拥有支持稳定感觉感知所必需的稳定性。感觉脑区的功能组织如何应对这些相互矛盾的需求呢?在这里,我们描述了三种感觉脑结构中听觉和多感觉(即听觉 - 视觉)信息处理的功能组织:(1)一个低级单感觉皮质区域,初级听觉皮质(A1);(2)一个高级多感觉皮质区域,前外侧沟(AES);以及(3)一个多感觉皮质下结构,上丘(SC)。然后,我们展示了一系列工作,这些工作表征了经验依赖性影响对这些区域内功能回路所执行操作的个体发生表达。我们将展示数据以支持以下假设:对可塑性和稳定性的相互竞争的需求是通过功能回路操作特性的发育转变来解决的,从出生后早期阶段最初不稳定的模式转变为成熟大脑中更稳定的模式,该模式在特定经验条件下仍保留可塑性能力。最后,我们讨论了从动物研究以及关于人类脑可塑性的不断增长的文献中得出的感觉脑结构功能组织和可塑性的核心原则之间的相似之处,以及这些原则在听力学诊所的潜在适用性。