Suppr超能文献

周质硝酸还原酶催化机制中第六个硫配体的作用。

The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase.

作者信息

Cerqueira N M F S A, Gonzalez P J, Brondino C D, Romão M J, Romão C C, Moura I, Moura J J G

机构信息

REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

出版信息

J Comput Chem. 2009 Nov 30;30(15):2466-84. doi: 10.1002/jcc.21280.

Abstract

The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton-electron transfer stage, where the Mo(V) species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo-dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with Mo(VI) ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl-dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur-based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of Mo(V) species. Mo(VI) intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the Mo(VI) species allow water molecule dissociation, and, the concomitant enzymatic turnover.

摘要

已使用理论和计算方法研究了周质硝酸还原酶还原硝酸盐的催化机制。我们发现,硝酸盐分子以处于+6氧化态的钼离子结合到活性位点。电子转移到活性位点仅发生在质子-电子转移阶段,其中Mo(V)物种在催化中起重要作用。钼配位球中硫原子的存在产生了一种假二硫烯配体,可保护其免受溶剂的任何直接攻击。硝酸盐结合后,该环会发生构象重排,使硝酸盐与Mo(VI)离子直接接触。这种重排由保守的甲硫氨酸Met141和Met308稳定。硝酸盐还原为亚硝酸盐发生在该机制的第二步,其中两个二甲基二硫烯配体在将Mo原子附近的过量负电荷分散以使其可用于化学反应方面起关键作用。该反应涉及硫原子的氧化,而不是如先前所认为的钼的氧化。该机制涉及基于钼和硫的氧化还原化学,而不是目前仅基于Mo离子的氧化还原化学。该机制的第二部分涉及由Mo(V)物种的存在促进的两个质子化步骤。根据质子和电子的可用性,该阶段也可能存在Mo(VI)中间体。一旦产生水分子,只有Mo(VI)物种允许水分子解离,并伴随酶的周转。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验