REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
J Biol Inorg Chem. 2011 Dec;16(8):1255-68. doi: 10.1007/s00775-011-0813-8. Epub 2011 Jul 20.
Metal-dependent formate dehydrogenases (Fdh) from prokaryotic organisms are members of the dimethyl sulfoxide reductase family of mononuclear molybdenum-containing and tungsten-containing enzymes. Fdhs catalyze the oxidation of the formate anion to carbon dioxide in a redox reaction that involves the transfer of two electrons from the substrate to the active site. The active site in the oxidized state comprises a hexacoordinated molybdenum or tungsten ion in a distorted trigonal prismatic geometry. Using this structural model, we calculated the catalytic mechanism of Fdh through density functional theory tools. The simulated mechanism was correlated with the experimental kinetic properties of three different Fdhs isolated from three different Desulfovibrio species. Our studies indicate that the C-H bond break is an event involved in the rate-limiting step of the catalytic cycle. The role in catalysis of conserved amino acid residues involved in metal coordination and near the metal active site is discussed on the basis of experimental and theoretical results.
金属依赖型甲酸盐脱氢酶(Fdh)来自原核生物,是包含二甲基亚砜还原酶家族的单核含钼和含钨酶的成员。Fdhs 催化甲酸盐阴离子在氧化还原反应中氧化为二氧化碳,其中涉及从底物向活性位点转移两个电子。在氧化态下,活性位点包含一个六配位的钼或钨离子,呈扭曲的三角棱柱几何形状。使用此结构模型,我们通过密度泛函理论工具计算了 Fdh 的催化机制。模拟的机制与从三个不同脱硫弧菌物种中分离出的三种不同 Fdhs 的实验动力学特性相关联。我们的研究表明,C-H 键断裂是催化循环限速步骤中涉及的事件。根据实验和理论结果,讨论了参与金属配位和靠近金属活性位点的保守氨基酸残基在催化中的作用。