Suppr超能文献

酵母端粒酶与SUN结构域蛋白Mps3锚定端粒并抑制亚端粒重组。

Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination.

作者信息

Schober Heiko, Ferreira Helder, Kalck Véronique, Gehlen Lutz R, Gasser Susan M

机构信息

NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland.

出版信息

Genes Dev. 2009 Apr 15;23(8):928-38. doi: 10.1101/gad.1787509.

Abstract

Telomeres form the ends of linear chromosomes and protect these ends from being recognized as DNA double-strand breaks. Telomeric sequences are maintained in most cells by telomerase, a reverse transcriptase that adds TG-rich repeats to chromosome ends. In budding yeast, telomeres are organized in clusters at the nuclear periphery by interactions that depend on components of silent chromatin and the telomerase-binding factor yeast Ku (yKu). In this study, we examined whether the subnuclear localization of telomeres affects end maintenance. A telomere anchoring pathway involving the catalytic yeast telomerase subunits Est2, Est1, and Tlc1 is shown to be necessary for the perinuclear anchoring activity of Yku80 during S phase. Additionally, we identify the conserved Sad1-UNC-84 (SUN) domain protein Mps3 as the principal membrane anchor for this pathway. Impaired interference with Mps3 anchoring through overexpression of the Mps3 N terminus in a tel1 deletion background led to a senescence phenotype and to deleterious levels of subtelomeric Y' recombination. This suggests that telomere binding to the nuclear envelope helps protect telomeric repeats from recombination. Our results provide an example of a specialized structure that requires proper spatiotemporal localization to fulfill its biological role, and identifies a novel pathway of telomere protection.

摘要

端粒形成线性染色体的末端,并保护这些末端不被识别为DNA双链断裂。在大多数细胞中,端粒序列由端粒酶维持,端粒酶是一种逆转录酶,可向染色体末端添加富含TG的重复序列。在芽殖酵母中,端粒通过依赖于沉默染色质成分和端粒酶结合因子酵母Ku(yKu)的相互作用,在核周边聚集成簇。在本研究中,我们研究了端粒的亚核定位是否影响末端维持。一条涉及催化性酵母端粒酶亚基Est2、Est1和Tlc1的端粒锚定途径,被证明是Yku80在S期进行核周锚定活性所必需的。此外,我们确定保守的Sad1-UNC-84(SUN)结构域蛋白Mps3是该途径的主要膜锚定蛋白。在tel1缺失背景下,通过过表达Mps3 N端对Mps3锚定的干扰受损,导致衰老表型和亚端粒Y'重组的有害水平。这表明端粒与核膜的结合有助于保护端粒重复序列不发生重组。我们的结果提供了一个特殊结构的例子,该结构需要适当的时空定位来发挥其生物学作用,并确定了一种新的端粒保护途径。

相似文献

2
Est1 protects telomeres and inhibits subtelomeric y'-element recombination.
Mol Cell Biol. 2011 Mar;31(6):1263-74. doi: 10.1128/MCB.00831-10. Epub 2011 Jan 10.
3
Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae.
DNA Repair (Amst). 2020 Dec;96:102996. doi: 10.1016/j.dnarep.2020.102996. Epub 2020 Oct 19.
4
The principal role of Ku in telomere length maintenance is promotion of Est1 association with telomeres.
Genetics. 2014 Aug;197(4):1123-36. doi: 10.1534/genetics.114.164707. Epub 2014 May 30.
6
Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3.
J Cell Biol. 2007 Dec 3;179(5):845-54. doi: 10.1083/jcb.200706040. Epub 2007 Nov 26.
10
Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination.
Mol Cell Biol. 2002 Aug;22(16):5679-87. doi: 10.1128/MCB.22.16.5679-5687.2002.

引用本文的文献

1
SUN-domain proteins of the malaria parasite are essential for proper nuclear division and DNA repair.
mBio. 2025 Apr 9;16(4):e0021625. doi: 10.1128/mbio.00216-25. Epub 2025 Mar 5.
2
Non-random spatial organization of telomeres varies during the cell cycle and requires LAP2 and BAF.
iScience. 2024 Feb 28;27(4):109343. doi: 10.1016/j.isci.2024.109343. eCollection 2024 Apr 19.
3
Telomere Checkpoint in Development and Aging.
Int J Mol Sci. 2023 Nov 5;24(21):15979. doi: 10.3390/ijms242115979.
4
Close Ties between the Nuclear Envelope and Mammalian Telomeres: Give Me Shelter.
Genes (Basel). 2023 Mar 23;14(4):775. doi: 10.3390/genes14040775.
6
Plant nuclear envelope as a hub connecting genome organization with regulation of gene expression.
Nucleus. 2023 Dec;14(1):2178201. doi: 10.1080/19491034.2023.2178201.
7
The yeast 2-micron plasmid Rep2 protein has Rep1-independent partitioning function.
Nucleic Acids Res. 2022 Oct 14;50(18):10571-10585. doi: 10.1093/nar/gkac810.
8
Sir2 and Reb1 antagonistically regulate nucleosome occupancy in subtelomeric X-elements and repress TERRAs by distinct mechanisms.
PLoS Genet. 2022 Sep 22;18(9):e1010419. doi: 10.1371/journal.pgen.1010419. eCollection 2022 Sep.
9
Rap1 prevents fusions between long telomeres in fission yeast.
EMBO J. 2022 Oct 17;41(20):e110458. doi: 10.15252/embj.2021110458. Epub 2022 Sep 5.
10

本文引用的文献

1
Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery.
Genes Dev. 2009 Apr 15;23(8):912-27. doi: 10.1101/gad.1782209.
2
The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion.
Genome Res. 2009 Apr;19(4):611-25. doi: 10.1101/gr.083881.108. Epub 2009 Jan 29.
3
A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis.
Science. 2009 Jan 30;323(5914):644-8. doi: 10.1126/science.1165357.
4
Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex.
Mol Cell Biol. 2009 Feb;29(3):835-48. doi: 10.1128/MCB.01009-08. Epub 2008 Dec 1.
6
Role for perinuclear chromosome tethering in maintenance of genome stability.
Nature. 2008 Dec 4;456(7222):667-70. doi: 10.1038/nature07460. Epub 2008 Nov 9.
7
Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase.
Science. 2008 Oct 24;322(5901):597-602. doi: 10.1126/science.1162790.
8
53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility.
Nature. 2008 Nov 27;456(7221):524-8. doi: 10.1038/nature07433. Epub 2008 Oct 19.
9
Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML.
FEBS Lett. 2008 Sep 22;582(21-22):3174-8. doi: 10.1016/j.febslet.2008.08.008. Epub 2008 Aug 15.
10
RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation.
Nat Cell Biol. 2008 May;10(5):538-46. doi: 10.1038/ncb1716. Epub 2008 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验