Suppr超能文献

钠调节异常在心脏病中的作用及其对电生理学的影响。

The role of Na dysregulation in cardiac disease and how it impacts electrophysiology.

作者信息

O'Rourke Brian, Maack Christoph

机构信息

The Johns Hopkins University, Institute of Molecular Cardiobiology, Division of Cardiology, Baltimore, MD, USA.

出版信息

Drug Discov Today Dis Models. 2007;4(4):207-217. doi: 10.1016/j.ddmod.2007.11.003.

Abstract

Ca(2+) is well known as the central player in cardiac cell physiology, mediating Ca(2+) activation of myosin ATPase and contraction, the stimulation of Ca(2+)-activated signaling pathways and modulation of mitochondrial energy production. Abnormalities of Ca(2+) handling are a well-studied mechanism of decompensation in heart failure. Less appreciated is the role of cytosolic Na(+) (Na(i) (+)), which can dramatically influence the transfer rates and distribution of Ca(2+) among the intracellular compartments of the myocyte. Since Na(i) (+) can vary widely under different physiological and pathological conditions, and its effects depend on multiple ion gradients and membrane electrical potentials, unraveling the global influence of Na(i) (+) on cell function is complex, requiring an integrative view of cardiomyocyte physiology. Here, we discuss how abnormal Na(i) (+) regulation not only influences the cytosolic Ca(2+) transient and the cellular action potential but also alters mitochondrial Ca(2+) uptake and the balance of energy supply and demand of the cardiomyocyte, which may contribute to oxidative stress and cardiac decompensation. The implications for sudden cardiac death and the potential for novel therapeutic interventions are discussed.

摘要

钙离子(Ca(2+))作为心脏细胞生理学的核心参与者广为人知,它介导肌球蛋白ATP酶的Ca(2+)激活和收缩、刺激Ca(2+)激活的信号通路以及调节线粒体能量产生。Ca(2+)处理异常是心力衰竭失代偿的一种经过充分研究的机制。胞质钠(Na(i) (+))的作用则较少受到重视,它可显著影响Ca(2+)在心肌细胞内各区间的转运速率和分布。由于Na(i) (+)在不同生理和病理条件下变化很大,其作用取决于多个离子梯度和膜电位,阐明Na(i) (+)对细胞功能的整体影响很复杂,需要对心肌细胞生理学有综合的认识。在此,我们讨论异常的Na(i) (+)调节如何不仅影响胞质Ca(2+)瞬变和细胞动作电位,还改变线粒体Ca(2+)摄取以及心肌细胞的能量供需平衡,这可能导致氧化应激和心脏失代偿。文中还讨论了对心源性猝死的影响以及新型治疗干预的潜力。

相似文献

引用本文的文献

8
NCLX: the mitochondrial sodium calcium exchanger.NCLX:线粒体钠钙交换器。
J Mol Cell Cardiol. 2013 Jun;59:205-13. doi: 10.1016/j.yjmcc.2013.03.012. Epub 2013 Mar 26.
9
Role of mitochondrial dysfunction in cardiac glycoside toxicity.线粒体功能障碍在强心苷毒性中的作用。
J Mol Cell Cardiol. 2010 Nov;49(5):728-36. doi: 10.1016/j.yjmcc.2010.06.012. Epub 2010 Jul 8.
10
Redox-optimized ROS balance: a unifying hypothesis.氧化还原优化的活性氧平衡:一个统一的假说。
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):865-77. doi: 10.1016/j.bbabio.2010.02.016. Epub 2010 Feb 20.

本文引用的文献

2
Excitation-contraction coupling and mitochondrial energetics.兴奋-收缩偶联与线粒体能量代谢。
Basic Res Cardiol. 2007 Sep;102(5):369-92. doi: 10.1007/s00395-007-0666-z. Epub 2007 Jul 27.
6
The mitochondrial origin of postischemic arrhythmias.缺血后心律失常的线粒体起源。
J Clin Invest. 2005 Dec;115(12):3527-35. doi: 10.1172/JCI25371. Epub 2005 Nov 10.
7
Digitalis: new actions for an old drug.洋地黄:一种老药的新作用。
Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H1781-93. doi: 10.1152/ajpheart.00707.2004.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验