Suppr超能文献

功能谱分析背景下的基因集内部一致性。

Gene set internal coherence in the context of functional profiling.

作者信息

Montaner David, Minguez Pablo, Al-Shahrour Fátima, Dopazo Joaquín

机构信息

Department of Bioinformatics and Genomics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.

出版信息

BMC Genomics. 2009 Apr 27;10:197. doi: 10.1186/1471-2164-10-197.

Abstract

BACKGROUND

Functional profiling methods have been extensively used in the context of high-throughput experiments and, in particular, in microarray data analysis. Such methods use available biological information to define different types of functional gene modules (e.g. gene ontology -GO-, KEGG pathways, etc.) whose representation in a pre-defined list of genes is further studied. In the most popular type of microarray experimental designs (e.g. up- or down-regulated genes, clusters of co-expressing genes, etc.) or in other genomic experiments (e.g. Chip-on-chip, epigenomics, etc.) these lists are composed by genes with a high degree of co-expression. Therefore, an implicit assumption in the application of functional profiling methods within this context is that the genes corresponding to the modules tested are effectively defining sets of co-expressing genes. Nevertheless not all the functional modules are biologically coherent entities in terms of co-expression, which will eventually hinder its detection with conventional methods of functional enrichment.

RESULTS

Using a large collection of microarray data we have carried out a detailed survey of internal correlation in GO terms and KEGG pathways, providing a coherence index to be used for measuring functional module co-regulation. An unexpected low level of internal correlation was found among the modules studied. Only around 30% of the modules defined by GO terms and 57% of the modules defined by KEGG pathways display an internal correlation higher than the expected by chance.This information on the internal correlation of the genes within the functional modules can be used in the context of a logistic regression model in a simple way to improve their detection in gene expression experiments.

CONCLUSION

For the first time, an exhaustive study on the internal co-expression of the most popular functional categories has been carried out. Interestingly, the real level of coexpression within many of them is lower than expected (or even inexistent), which will preclude its detection by means of most conventional functional profiling methods. If the gene-to-function correlation information is used in functional profiling methods, the results obtained improve the ones obtained by conventional enrichment methods.

摘要

背景

功能谱分析方法已在高通量实验中广泛应用,尤其是在微阵列数据分析中。此类方法利用可用的生物学信息来定义不同类型的功能基因模块(例如基因本体-GO-、KEGG通路等),并进一步研究这些模块在预定义基因列表中的表现。在最常见的微阵列实验设计类型(例如上调或下调基因、共表达基因簇等)或其他基因组实验(例如芯片杂交、表观基因组学等)中,这些列表由具有高度共表达的基因组成。因此,在此背景下应用功能谱分析方法的一个隐含假设是,与测试模块相对应的基因有效地定义了共表达基因集。然而,并非所有功能模块在共表达方面都是生物学上连贯的实体,这最终会阻碍用传统的功能富集方法对其进行检测。

结果

我们使用大量微阵列数据对GO术语和KEGG通路中的内部相关性进行了详细调查,提供了一个用于测量功能模块共调控的连贯指数。在所研究的模块中发现了意想不到的低水平内部相关性。只有大约30%的由GO术语定义的模块和57%的由KEGG通路定义的模块显示出高于偶然预期的内部相关性。功能模块内基因的这种内部相关性信息可以简单地在逻辑回归模型的背景下使用,以改善它们在基因表达实验中的检测。

结论

首次对最流行的功能类别进行了详尽的内部共表达研究。有趣的是,其中许多类别的实际共表达水平低于预期(甚至不存在),这将排除用大多数传统功能谱分析方法对其进行检测的可能性。如果在功能谱分析方法中使用基因与功能的相关信息,所获得的结果会比传统富集方法获得的结果更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6888/2680416/321340bd69d3/1471-2164-10-197-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验