Suppr超能文献

RNA催化的理论研究:量子力学/分子力学混合方法及其与分子动力学和量子力学的比较。

Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM.

作者信息

Banás Pavel, Jurecka Petr, Walter Nils G, Sponer Jirí, Otyepka Michal

机构信息

Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czech Republic.

出版信息

Methods. 2009 Oct;49(2):202-16. doi: 10.1016/j.ymeth.2009.04.007. Epub 2009 May 4.

Abstract

Hybrid QM/MM methods combine the rigor of quantum mechanical (QM) calculations with the low computational cost of empirical molecular mechanical (MM) treatment allowing to capture dynamic properties to probe critical atomistic details of enzyme reactions. Catalysis by RNA enzymes (ribozymes) has only recently begun to be addressed with QM/MM approaches and is thus still a field under development. This review surveys methodology as well as recent advances in QM/MM applications to RNA mechanisms, including those of the HDV, hairpin, and hammerhead ribozymes, as well as the ribosome. We compare and correlate QM/MM results with those from QM and/or molecular dynamics (MD) simulations, and discuss scope and limitations with a critical eye on current shortcomings in available methodologies and computer resources. We thus hope to foster mutual appreciation and facilitate collaboration between experimentalists and theorists to jointly advance our understanding of RNA catalysis at an atomistic level.

摘要

量子力学/分子力学(QM/MM)混合方法将量子力学(QM)计算的精确性与经验性分子力学(MM)处理的低计算成本相结合,能够捕捉动态特性,以探究酶反应的关键原子细节。RNA酶(核酶)催化作用直到最近才开始用量子力学/分子力学方法进行研究,因此仍是一个正在发展的领域。本综述考察了量子力学/分子力学方法在RNA机制应用方面的方法以及最新进展,包括丁型肝炎病毒(HDV)、发夹状和锤头状核酶以及核糖体的相关机制。我们将量子力学/分子力学的结果与量子力学和/或分子动力学(MD)模拟的结果进行比较和关联,并批判性地审视现有方法和计算机资源的当前不足,讨论其范围和局限性。因此,我们希望促进实验人员和理论人员之间的相互理解,推动合作,共同提升我们在原子水平上对RNA催化作用的理解。

相似文献

1
Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM.
Methods. 2009 Oct;49(2):202-16. doi: 10.1016/j.ymeth.2009.04.007. Epub 2009 May 4.
3
The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations.
Phys Chem Chem Phys. 2015 Jan 7;17(1):670-9. doi: 10.1039/c4cp03857f.
5
Ribozymes: structure and mechanism in RNA catalysis.
Trends Biochem Sci. 1996 Jun;21(6):220-4.
6
Quantum mechanical/molecular mechanical simulation study of the mechanism of hairpin ribozyme catalysis.
J Am Chem Soc. 2008 Apr 9;130(14):4680-91. doi: 10.1021/ja0759141. Epub 2008 Mar 18.
7
Recent advances toward a general purpose linear-scaling quantum force field.
Acc Chem Res. 2014 Sep 16;47(9):2812-20. doi: 10.1021/ar500103g. Epub 2014 Jun 17.
8
Role of Mg2+ in hammerhead ribozyme catalysis from molecular simulation.
J Am Chem Soc. 2008 Mar 12;130(10):3053-64. doi: 10.1021/ja076529e. Epub 2008 Feb 14.
9
Multiscale methods for computational RNA enzymology.
Methods Enzymol. 2015;553:335-74. doi: 10.1016/bs.mie.2014.10.064. Epub 2015 Jan 22.
10
A hammerhead ribozyme selects mechanically stable conformations for catalysis against viral RNA.
Commun Biol. 2025 Feb 3;8(1):165. doi: 10.1038/s42003-025-07600-3.

引用本文的文献

1
Engineering the Reaction Pathway of a Non-heme Iron Oxygenase Using Ancestral Sequence Reconstruction.
J Am Chem Soc. 2024 Dec 18;146(50):34352-34363. doi: 10.1021/jacs.4c08420. Epub 2024 Dec 6.
2
An overview of structural approaches to study therapeutic RNAs.
Front Mol Biosci. 2022 Oct 28;9:1044126. doi: 10.3389/fmolb.2022.1044126. eCollection 2022.
3
Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.
J Chem Theory Comput. 2010 Dec 14;6(12):3836-3849. doi: 10.1021/ct100481h. Epub 2010 Nov 9.
4
Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations.
J Struct Biol. 2019 Jun 1;206(3):267-279. doi: 10.1016/j.jsb.2019.03.004. Epub 2019 Mar 15.
6
Molecular insight on the non-covalent interactions between carbapenems and L,D-transpeptidase 2 from Mycobacterium tuberculosis: ONIOM study.
J Comput Aided Mol Des. 2018 Jun;32(6):687-701. doi: 10.1007/s10822-018-0121-2. Epub 2018 May 29.
7
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
8
A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation.
ACS Catal. 2016;6(3):1853-1869. doi: 10.1021/acscatal.5b02158. Epub 2016 Feb 1.
9
Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.
J Chem Theory Comput. 2016 Sep 13;12(9):4534-48. doi: 10.1021/acs.jctc.6b00300. Epub 2016 Aug 4.
10
Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations.
J Chem Phys. 2015 Dec 21;143(23):234111. doi: 10.1063/1.4937166.

本文引用的文献

2
Spontaneous Formation of KCl Aggregates in Biomolecular Simulations: A Force Field Issue?
J Chem Theory Comput. 2007 Sep;3(5):1851-9. doi: 10.1021/ct700143s.
3
Performance Evaluation of the Three-Layer ONIOM Method:  Case Study for a Zwitterionic Peptide.
J Chem Theory Comput. 2006 Sep;2(5):1317-24. doi: 10.1021/ct600135b.
4
Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM.
J Chem Theory Comput. 2006 May;2(3):815-26. doi: 10.1021/ct050289g.
9
A repulsive field: advances in the electrostatics of the ion atmosphere.
Curr Opin Chem Biol. 2008 Dec;12(6):619-25. doi: 10.1016/j.cbpa.2008.10.010. Epub 2008 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验