Suppr超能文献

一种基于锥面镜设计的用于小动物的三维多光谱荧光光学断层成像系统。

A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design.

作者信息

Li Changqing, Mitchell Gregory S, Dutta Joyita, Ahn Sangtae, Leahy Richard M, Cherry Simon R

机构信息

Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA.

出版信息

Opt Express. 2009 Apr 27;17(9):7571-85. doi: 10.1364/oe.17.007571.

Abstract

We have developed a three dimensional (3D) multispectral fluorescence optical tomography small animal imaging system with an innovative geometry using a truncated conical mirror, allowing simultaneous viewing of the entire surface of the animal by an EMCCD camera. A conical mirror collects photons approximately three times more efficiently than a flat mirror. An x-y mirror scanning system makes it possible to scan a collimated excitation laser beam to any location on the mouse surface. A pattern of structured light incident on the small animal surface is used to extract the surface geometry for reconstruction. A finite element based algorithm is applied to model photon propagation in the turbid media and a preconditioned conjugate gradient (PCG) method is used to solve the large linear system matrix. The reconstruction algorithm and the system feasibility are evaluated by phantom experiments. These experiments show that multispectral measurements improve the spatial resolution of reconstructed images. Finally, an in vivo imaging study of a xenograft tumor in a mouse shows good correlation of the reconstructed image with the location of the fluorescence probe as determined by subsequent optical imaging of cryosections of the mouse.

摘要

我们开发了一种三维(3D)多光谱荧光光学断层扫描小动物成像系统,该系统采用创新的几何结构,使用截头圆锥镜,可通过电子倍增电荷耦合器件(EMCCD)相机同时观察动物的整个表面。圆锥镜收集光子的效率比平面镜高约三倍。一个x-y镜扫描系统使准直的激发激光束能够扫描到小鼠表面的任何位置。入射在小动物表面的结构光图案用于提取表面几何形状以进行重建。应用基于有限元的算法对光子在混浊介质中的传播进行建模,并使用预处理共轭梯度(PCG)方法求解大型线性系统矩阵。通过体模实验评估重建算法和系统的可行性。这些实验表明,多光谱测量提高了重建图像的空间分辨率。最后,对小鼠体内异种移植肿瘤的活体成像研究表明,重建图像与通过小鼠冷冻切片的后续光学成像确定的荧光探针位置具有良好的相关性。

相似文献

2
Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system.
J Nucl Med. 2011 Aug;52(8):1268-75. doi: 10.2967/jnumed.110.082859.
3
In vivo three-dimensional photoacoustic tomography of a whole mouse head.
Opt Lett. 2006 Aug 15;31(16):2453-5. doi: 10.1364/ol.31.002453.
7
8
Three-dimensional imaging of whole rodent organs using optical computed and emission tomography.
J Biomed Opt. 2007 Jan-Feb;12(1):014009. doi: 10.1117/1.2709858.
9
Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections.
Opt Lett. 2007 Feb 15;32(4):382-4. doi: 10.1364/ol.32.000382.
10
Three-dimensional nonlinear optical endoscopy.
J Biomed Opt. 2007 Jul-Aug;12(4):040501. doi: 10.1117/1.2756102.

引用本文的文献

1
Super-Fast Three-Dimensional Focused X-ray Luminescence Computed Tomography with a Gated Photon Counter.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12036. doi: 10.1117/12.2613157. Epub 2022 Apr 4.
2
Superfast Scan of Focused X-Ray Luminescence Computed Tomography Imaging.
IEEE Access. 2023;11:134183-134190. doi: 10.1109/access.2023.3336615. Epub 2023 Nov 23.
4
Review of in vivo optical molecular imaging and sensing from x-ray excitation.
J Biomed Opt. 2021 Jan;26(1). doi: 10.1117/1.JBO.26.1.010902.
5
High-speed X-ray-induced luminescence computed tomography.
J Biophotonics. 2020 Sep;13(9):e202000066. doi: 10.1002/jbio.202000066. Epub 2020 Jun 23.
6
High-resolution x-ray luminescence computed tomography.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2544493. Epub 2020 Feb 28.
7
Background luminescence in x-ray luminescence computed tomography (XLCT) imaging.
Appl Opt. 2019 Feb 1;58(4):1084-1092. doi: 10.1364/AO.58.001084.
8
Spectral-resolved cone-beam X-ray luminescence computed tomography with principle component analysis.
Biomed Opt Express. 2018 May 30;9(6):2844-2858. doi: 10.1364/BOE.9.002844. eCollection 2018 Jun 1.
9
X-ray luminescence computed tomography using a focused x-ray beam.
J Biomed Opt. 2017 Nov;22(11):1-11. doi: 10.1117/1.JBO.22.11.116004.
10
Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method.
J Biomed Opt. 2017 May 1;22(5):55001. doi: 10.1117/1.JBO.22.5.055001.

本文引用的文献

1
The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data.
Int J Biomed Imaging. 2006;2006:58601. doi: 10.1155/IJBI/2006/58601. Epub 2006 Dec 4.
2
Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice.
Opt Express. 2005 Apr 4;13(7):2564-77. doi: 10.1364/opex.13.002564.
3
Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye.
Opt Express. 2002 Dec 30;10(26):1557-62. doi: 10.1364/oe.10.001557.
4
Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue.
Rev Sci Instrum. 2008 Jun;79(6):064302. doi: 10.1063/1.2919131.
5
Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography.
Phys Med Biol. 2008 Jul 21;53(14):3921-42. doi: 10.1088/0031-9155/53/14/013. Epub 2008 Jun 30.
6
7
Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections.
Opt Lett. 2007 Feb 15;32(4):382-4. doi: 10.1364/ol.32.000382.
8
A hyperspectral fluorescence system for 3D in vivo optical imaging.
Phys Med Biol. 2006 Apr 21;51(8):2029-43. doi: 10.1088/0031-9155/51/8/005. Epub 2006 Apr 3.
10
Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging.
Phys Med Biol. 2005 Dec 7;50(23):5421-41. doi: 10.1088/0031-9155/50/23/001. Epub 2005 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验