Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA.
Am J Physiol Renal Physiol. 2010 Sep;299(3):F616-33. doi: 10.1152/ajprenal.00680.2009. Epub 2010 Jun 9.
To examine the impact of the complex radial organization of the rat outer medulla (OM) on the distribution of nitric oxide (NO), superoxide (O(2)(-)) and total peroxynitrite (ONOO), we developed a mathematical model that simulates the transport of those species in a cross section of the rat OM. To simulate the preferential interactions among tubules and vessels that arise from their relative radial positions in the OM, we adopted the region-based approach developed by Layton and Layton (Am J Physiol Renal Physiol 289: F1346-F1366, 2005). In that approach, the structural organization of the OM is represented by means of four concentric regions centered on a vascular bundle. The model predicts the concentrations of NO, O(2)(-), and ONOO in the tubular and vascular lumen, epithelial and endothelial cells, red blood cells (RBCs), and interstitial fluid. Model results suggest that the large gradients in Po(2) from the core of the vascular bundle toward its periphery, which stem from the segregation of O(2)-supplying descending vasa recta (DVR) within the vascular bundles, in turn generate steep radial NO and O(2)(-) concentration gradients, since the synthesis of both solutes is O(2) dependent. Without the rate-limiting effects of O(2), NO concentration would be lowest in the vascular bundle core, that is, the region with the highest density of RBCs, which act as a sink for NO. Our results also suggest that, under basal conditions, the difference in NO concentrations between DVR that reach into the inner medulla and those that turn within the OM should lead to differences in vasodilation and preferentially increase blood flow to the inner medulla.
为了研究大鼠外髓质(OM)复杂的放射状组织结构对一氧化氮(NO)、超氧阴离子(O(2)(-))和过氧亚硝酸盐(ONOO)分布的影响,我们开发了一个数学模型,模拟这些物质在大鼠 OM 横截面上的传输。为了模拟管和血管之间由于它们在 OM 中的相对放射状位置而产生的优先相互作用,我们采用了由 Layton 和 Layton 提出的基于区域的方法(Am J Physiol Renal Physiol 289: F1346-F1366, 2005)。在该方法中,OM 的结构组织通过以血管束为中心的四个同心区域来表示。该模型预测了管状和血管腔、上皮和内皮细胞、红细胞(RBCs)和间质液中 NO、O(2)(-)和 ONOO 的浓度。模型结果表明,由于血管束内供应 O(2)的下行直血管(DVR)的分离,从血管束的核心到其外周的 Po(2)梯度很大,这反过来又产生了陡峭的径向 NO 和 O(2)(-)浓度梯度,因为这两种溶质的合成都依赖于 O(2)。如果没有 O(2)的限速作用,NO 浓度将在血管束核心最低,即 RBC 密度最高的区域,RBC 作为 NO 的汇。我们的结果还表明,在基础条件下,进入内髓质的 DVR 和在 OM 内转弯的 DVR 之间的 NO 浓度差异应导致血管舒张的差异,并优先增加向内髓质的血流。