Suppr超能文献

分子马达如何塑造鞭毛摆动。

How molecular motors shape the flagellar beat.

作者信息

Riedel-Kruse Ingmar H, Hilfinger Andreas, Howard Jonathon, Jülicher Frank

出版信息

HFSP J. 2007 Sep;1(3):192-208. doi: 10.2976/1.2773861.

Abstract

Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such "sliding control" is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors.

摘要

纤毛和真核生物鞭毛是细长的细胞附属物,其规则的摆动推动细胞和微生物在水性介质中运动。这种摆动是由动力蛋白产生的一种传播性弯曲的振荡模式。一个关键的开放性问题是这些动力蛋白的活动如何在空间和时间上进行协调。为了阐明这种协调的本质,我们通过分析摆动精子的形状来推断动力蛋白的力学特性:对稳定摆动的公牛精子进行成像,并使用傅里叶平均技术高精度测量其形状。将我们的实验数据与针对动力蛋白协调的不同情况计算出的波形进行比较,我们发现只有双联体间滑动调节动力蛋白活动的情况才能产生令人满意的拟合。我们提出这种“滑动控制”的微观起源是动力蛋白与负载相关的脱离速率。只有当微管基部发生显著滑动时,才能获得观察到的波形与计算波形之间的一致性。这表明了一种新机制,通过该机制基部顺应性的变化可以逆转摆动传播的方向。我们得出结论,鞭毛摆动模式是由轴丝的基部特性和动力蛋白的机械反馈相互作用决定的。

相似文献

2
How signals of calcium ions initiate the beats of cilia and flagella.钙离子信号如何引发纤毛和鞭毛的摆动。
Biosystems. 2019 Aug;182:42-51. doi: 10.1016/j.biosystems.2019.103981. Epub 2019 Jun 13.
3
Calcium ions tune the beats of cilia and flagella.钙离子调节纤毛和鞭毛的搏动。
Biosystems. 2020 Oct;196:104172. doi: 10.1016/j.biosystems.2020.104172. Epub 2020 Jun 10.
4
Curvature regulation of the ciliary beat through axonemal twist.通过轴丝扭转调节纤毛的弯曲。
Phys Rev E. 2016 Oct;94(4-1):042426. doi: 10.1103/PhysRevE.94.042426. Epub 2016 Oct 28.
6
Reconstitution of flagellar sliding.鞭毛滑动的重建。
Methods Enzymol. 2013;524:343-69. doi: 10.1016/B978-0-12-397945-2.00019-6.
7
Turning dyneins off bends cilia.关闭动力蛋白会使纤毛弯曲。
Cytoskeleton (Hoboken). 2018 Aug;75(8):372-381. doi: 10.1002/cm.21483. Epub 2018 Sep 16.

引用本文的文献

2
Ciliary beating patterns map onto a low-dimensional behavioural space.纤毛跳动模式映射到一个低维行为空间。
Nat Phys. 2022 Mar;18(3):332-337. doi: 10.1038/s41567-021-01446-2. Epub 2022 Jan 10.
3
Exploring sperm cell motion dynamics: Insights from genetic algorithm-based analysis.探索精子细胞运动动力学:基于遗传算法分析的见解
Comput Struct Biotechnol J. 2024 Jun 27;23:2837-2850. doi: 10.1016/j.csbj.2024.06.008. eCollection 2024 Dec.
4
Active fluctuations of axoneme oscillations scale with number of dynein motors.轴丝摆动的主动涨落与动力蛋白数量成比例。
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2406244121. doi: 10.1073/pnas.2406244121. Epub 2024 Nov 5.
5
Energy metabolism and spermatogenesis.能量代谢与精子发生。
Heliyon. 2024 Sep 27;10(19):e38591. doi: 10.1016/j.heliyon.2024.e38591. eCollection 2024 Oct 15.
10
Assembly of FAP93 at the proximal axoneme in Chlamydomonas cilia.在衣藻纤毛的近端轴丝上组装 FAP93。
Cytoskeleton (Hoboken). 2024 Nov;81(11):539-555. doi: 10.1002/cm.21818. Epub 2024 Jan 15.

本文引用的文献

8
Theory of mitotic spindle oscillations.有丝分裂纺锤体振荡理论。
Phys Rev Lett. 2005 Mar 18;94(10):108104. doi: 10.1103/PhysRevLett.94.108104.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验