Suppr超能文献

蛋白质建模中的接触预测:粗粒度模型的评分、折叠与优化

Contact prediction in protein modeling: scoring, folding and refinement of coarse-grained models.

作者信息

Latek Dorota, Kolinski Andrzej

机构信息

Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.

出版信息

BMC Struct Biol. 2008 Aug 11;8:36. doi: 10.1186/1472-6807-8-36.

Abstract

BACKGROUND

Several different methods for contact prediction succeeded within the Sixth Critical Assessment of Techniques for Protein Structure Prediction (CASP6). The most relevant were non-local contact predictions for targets from the most difficult categories: fold recognition-analogy and new fold. Such contacts could provide valuable structural information in case a template structure cannot be found in the PDB.

RESULTS

We described comprehensive tests of the effectiveness of contact data in various aspects of de novo modeling with CABS, an algorithm which was used successfully in CASP6 by the Kolinski-Bujnicki group. We used the predicted contacts in a simple scoring function for the post-simulation ranking of protein models and as a soft bias in the folding simulations and in the fold-refinement procedure. The latter approach turned out to be the most successful. The CABS force field used in the Replica Exchange Monte Carlo simulations cooperated with the true contacts and discriminated the false ones, which resulted in an improvement of the majority of Kolinski-Bujnicki's protein models. In the modeling we tested different sets of predicted contact data submitted to the CASP6 server. According to our results, the best performing were the contacts with the accuracy balanced with the coverage, obtained either from the best two predictors only or by a consensus from as many predictors as possible.

CONCLUSION

Our tests have shown that theoretically predicted contacts can be very beneficial for protein structure prediction. Depending on the protein modeling method, a contact data set applied should be prepared with differently balanced coverage and accuracy of predicted contacts. Namely, high coverage of contact data is important for the model ranking and high accuracy for the folding simulations.

摘要

背景

在第六届蛋白质结构预测技术关键评估(CASP6)中,几种不同的接触预测方法取得了成功。最相关的是针对最困难类别目标的非局部接触预测:折叠识别 - 类比和新折叠。如果在蛋白质数据银行(PDB)中找不到模板结构,此类接触可提供有价值的结构信息。

结果

我们描述了使用CABS从头建模的各个方面中接触数据有效性的全面测试,CABS是一种算法,在CASP6中被科林斯基 - 布伊尼基小组成功使用。我们将预测的接触用于一个简单的评分函数,对蛋白质模型进行模拟后排名,并作为折叠模拟和折叠优化过程中的软偏差。后一种方法最为成功。在复制交换蒙特卡罗模拟中使用的CABS力场与真实接触协同作用,并区分虚假接触,这使得科林斯基 - 布伊尼基的大多数蛋白质模型得到改进。在建模过程中,我们测试了提交到CASP6服务器的不同预测接触数据集。根据我们的结果,表现最佳的是那些精度与覆盖率平衡的接触,这些接触要么仅来自最佳的两个预测器,要么通过尽可能多的预测器的共识获得。

结论

我们的测试表明,理论上预测的接触对蛋白质结构预测非常有益。根据蛋白质建模方法的不同,应用的接触数据集应在预测接触的覆盖率和精度上进行不同的平衡准备。也就是说,高覆盖率的接触数据对模型排名很重要,而高精度对折叠模拟很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/409d/2527566/5bd969458047/1472-6807-8-36-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验