Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
Biomacromolecules. 2009 Jul 13;10(7):1804-9. doi: 10.1021/bm9002283. Epub 2009 May 8.
We report here an approach to grafting DNA-polymer bioconjugates on a planar solid support using reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, a trithiocarbonate compound as the RAFT chain transfer agent (CTA) is attached to the distal point of a surface-immobilized oligonucleotide. Initiation of RAFT polymerization leads to controlled growth of polymers atop DNA molecules on the surface. Growth kinetics of poly(monomethoxy-capped oligo(ethylene glycol) methacrylate) atop DNA molecules is investigated by monitoring the change of polymer film thickness as a function of reaction time. The reaction conditions, including the polymerization temperature, the initiator concentration, the CTA surface density, and the selection of monomers, are varied to examine their impacts on the grafting efficiency of DNA-polymer conjugates. Comparing to polymer growth atop small molecules, the experimental results suggest that DNA molecules significantly accelerate polymer growth, which is speculated as a result of the presence of highly charged DNA backbones and purine/pyrimidine moieties surrounding the reaction sites.
我们在此报告了一种使用可逆加成-断裂链转移(RAFT)聚合将 DNA-聚合物生物缀合物接枝到平面固体载体上的方法。具体而言,将三硫代碳酸酯化合物作为 RAFT 链转移剂(CTA)连接到表面固定寡核苷酸的远端点。RAFT 聚合的引发导致聚合物在表面上的 DNA 分子顶部进行受控生长。通过监测聚合物膜厚度随反应时间的变化来研究聚(单甲氧基封端的聚(乙二醇)甲基丙烯酸酯)在 DNA 分子顶部的生长动力学。改变反应条件,包括聚合温度、引发剂浓度、CTA 表面密度和单体选择,以检查它们对 DNA-聚合物缀合物接枝效率的影响。与小分子上的聚合物生长相比,实验结果表明 DNA 分子显著加速了聚合物的生长,这被推测是由于反应位点周围存在带高电荷的 DNA 骨架和嘌呤/嘧啶基团。