Cellamare A, Catacchio C R, Alkan C, Giannuzzi G, Antonacci F, Cardone M F, Della Valle G, Malig M, Rocchi M, Eichler E E, Ventura M
Department of Genetics and Microbiology, University of Bari, Bari, Italy.
Mol Biol Evol. 2009 Aug;26(8):1889-900. doi: 10.1093/molbev/msp101. Epub 2009 May 8.
The evolutionary history of alpha-satellite DNA, the major component of primate centromeres, is hardly defined because of the difficulty in its sequence assembly and its rapid evolution when compared with most genomic sequences. By using several approaches, we have cloned, sequenced, and characterized alpha-satellite sequences from two species representing critical nodes in the primate phylogeny: the white-cheeked gibbon, a lesser ape, and marmoset, a New World monkey. Sequence analyses demonstrate that white-cheeked gibbon and marmoset alpha-satellite sequences are formed by units of approximately 171 and approximately 342 bp, respectively, and they both lack the high-order structure found in humans and great apes. Fluorescent in situ hybridization characterization shows a broad dispersal of alpha-satellite in the white-cheeked gibbon genome including centromeric, telomeric, and chromosomal interstitial localizations. On the other hand, centromeres in marmoset appear organized in highly divergent dimers roughly of 342 bp that show a similarity between monomers much lower than previously reported dimers, thus representing an ancient dimeric structure. All these data shed light on the evolution of the centromeric sequences in Primates. Our results suggest radical differences in the structure, organization, and evolution of alpha-satellite DNA among different primate species, supporting the notion that 1) all the centromeric sequence in Primates evolved by genomic amplification, unequal crossover, and sequence homogenization using a 171 bp monomer as the basic seeding unit and 2) centromeric function is linked to relatively short repeated elements, more than higher-order structure. Moreover, our data indicate that complex higher-order repeat structures are a peculiarity of the hominid lineage, showing the more complex organization in humans.
α-卫星DNA是灵长类动物着丝粒的主要组成部分,由于其序列组装困难且与大多数基因组序列相比进化迅速,其进化历史几乎未被明确界定。通过使用多种方法,我们从代表灵长类系统发育关键节点的两个物种中克隆、测序并表征了α-卫星序列:白颊长臂猿,一种小型猿类,以及狨猴,一种新大陆猴。序列分析表明,白颊长臂猿和狨猴的α-卫星序列分别由约171 bp和约342 bp的单元组成,并且它们都缺乏人类和大型猿类中发现的高阶结构。荧光原位杂交表征显示α-卫星在白颊长臂猿基因组中广泛分布,包括着丝粒、端粒和染色体间质定位。另一方面,狨猴的着丝粒似乎以高度不同的约342 bp二聚体形式组织,这些二聚体显示出单体之间的相似性远低于先前报道的二聚体,因此代表了一种古老的二聚体结构。所有这些数据都揭示了灵长类动物着丝粒序列的进化。我们的结果表明,不同灵长类物种之间α-卫星DNA在结构、组织和进化上存在根本差异,支持以下观点:1)灵长类动物所有着丝粒序列均通过基因组扩增、不等交换和序列均一化以171 bp单体作为基本种子单元进化而来;2)着丝粒功能与相对较短的重复元件相关,而不是高阶结构。此外,我们的数据表明复杂的高阶重复结构是人类谱系的一个特点,显示出人类中更复杂的组织形式。