Müller Lutz, Gocke Elmar, Lavé Thierry, Pfister Thomas
F. Hoffmann-La Roche Ltd., Nonclinical Safety, Grenzacher Strasse, 4070 Basel, Switzerland.
Toxicol Lett. 2009 Nov 12;190(3):317-29. doi: 10.1016/j.toxlet.2009.04.003. Epub 2009 Apr 10.
Based on a production accident Viracept (nelfinavir mesilate) tablets, an HIV protease inhibitor supplied by Roche outside the US, Canada and Japan was contaminated with relatively high levels of ethyl methanesulfonate (EMS) for at most 3 months in spring of 2007. On the basis of a wide variety of toxicological data including critical experiments for mutation induction under chronic exposure conditions and cross-species exposure scaling experiments to extrapolate to humans, we estimate the added risk of adverse effects (cancer, birth abnormalities, heritable defects) in any individual patient accidentally exposed to EMS via contaminated Viracept tablets in the context of this production accident as essentially zero. Of critical important for this risk assessment are pivotal in vivo genotoxicity studies (MNT, MutaMouse) providing evidence for 'hockey-stick', like dose-response relationships for the risk defining induction of gene mutations and chromosomal damage by EMS [Gocke, E., Müller, L., Pfister, T., Buergin, H., 2009a. Literature review on the genotoxicity, reproductive toxicity, and carcinogenicity of ethyl methanesulfonate. Toxicol. Lett.; Gocke, E., Müller, L., Pfister, T., 2009b. EMS in Viracept-initial ('traditional') assessment of risk to patients based on linear dose response relations. Toxicol. Lett.; Gocke, E., Müller, L., Ballantyne, M., Whitwell, J., Müller, L., 2009c. MNT and MutaMouse studies to definde the in vivo dose-response relations of the genotoxicity of EMS and ENU. Toxicol. Lett.]. As outlined in Gocke and Wall [Gocke, E., Wall, M., 2009. In vivo genotoxicity of EMS: Statistical assessment of the dose response curves. Toxicol. Lett.], several statistical approaches are in support of a threshold model to best fit the data. The presence of clear no effect levels in bone marrow, liver and GI-tract tissue with several dose levels tested below the NOEL permits the calculation of safety factors with considerable confidence. In calculating the ratio of the NOEL dose in the animal studies (25mg/kg/day) divided by the calculated maximal daily dose of the patients (1068ppm EMS in 2.92g Viracept tablets=2.75mg EMS or 0.055mg/kg for a 50kg person) we derive a safety factor of 454 based on oral intake. Detailed absorption, distribution and metabolism studies in mice, rats and monkeys and with human surrogates in vitro enable us to estimate the safety factors also for the calculated likely highest exposure (AUC and C(max)) of patients to EMS [Lave, T., Birnböck, H., Götschi, A., Ramp, T., Pähler, A., 2009a. In vivo and in vitro characterization of ethyl methanesulfonate pharmacokinetics in animals and in human. Toxicol. Lett.; Lave, T., Paehler, A., Grimm, H.P., 2009b. Modelling of patient EMS exposure: translating pharmacokinetics of EMS in vitro and in animals into patients. Toxicol. Lett.]. We calculate the total exposure (AUC) based safety factor to amount to at least 28. This lower value is due to the conservative prediction of a longer half-life of EMS in man versus mouse, rat and monkey. Based on the estimated human C(max) the safety factor for affected Viracept patients is calculated to be 370, as C(max) is mainly dependent on volume of distribution, which is not much different for EMS in different species. We consider that the total exposure based safety factor constitutes a minimal value since the considerations regarding evidence of error-free repair at sub-threshold concentrations argues in favor of using the highest EMS concentration (C(max)) rather than the AUC as basis for risk assessment. The 'true value' very likely lies somewhere between these two numbers as aspects such as repair enzyme availability and status of the cell cycle relative to the insult are important parameters that may not fully support safety factors based solely on C(max) estimates. Potential adverse effects of EMS such as cancer, birth abnormalities and heritable effects are considered to be sequelae of its genotoxic activity. Hence, the thresholded dose-response relationships should also apply to these endpoints. We also provide a comprehensive discussion of the specific disease situation of the HIV infected target population and potential influences of co-medications on the susceptibilities and repair capacities of EMS induced DNA lesions.
基于一起生产事故,美国、加拿大和日本以外地区由罗氏公司供应的HIV蛋白酶抑制剂维乐命(奈非那韦甲磺酸盐)片剂在2007年春季被相对高浓度的甲磺酸乙酯(EMS)污染,长达3个月。基于包括慢性暴露条件下关键的致突变实验以及用于外推至人类的跨物种暴露缩放实验等各种各样的毒理学数据,我们估计在此次生产事故中,任何因服用受污染的维乐命片剂而意外接触EMS的个体患者出现不良反应(癌症、出生缺陷、遗传缺陷)的额外风险基本为零。对于该风险评估至关重要的是关键的体内遗传毒性研究(小鼠骨髓嗜多染红细胞微核试验、MutaMouse试验),这些研究为EMS诱导基因突变和染色体损伤的风险定义提供了类似“曲棍球棒”的剂量反应关系的证据[戈克,E.,米勒,L.,普菲斯特,T.,比尔金,H.,2009年a。甲磺酸乙酯的遗传毒性、生殖毒性和致癌性文献综述。毒理学快报;戈克,E.,米勒,L.,普菲斯特,T.,2009年b。维乐命中的EMS——基于线性剂量反应关系对患者风险的初步(“传统”)评估。毒理学快报;戈克,E.,米勒,L.,巴兰坦,M.,惠特韦尔,J.,米勒,L.,2009年c。小鼠骨髓嗜多染红细胞微核试验和MutaMouse试验以确定EMS和ENU遗传毒性的体内剂量反应关系。毒理学快报]。正如戈克和沃尔[戈克,E.,沃尔,M.,2009年。EMS的体内遗传毒性:剂量反应曲线的统计评估。毒理学快报]所概述的,几种统计方法支持采用阈值模型来最佳拟合数据。在低于无明显作用水平(NOEL)的几个剂量水平下,在骨髓、肝脏和胃肠道组织中存在明确的无作用水平,这使得能够相当有把握地计算安全系数。在计算动物研究中的NOEL剂量(25mg/kg/天)除以患者计算出的最大日剂量(2.92g维乐命片剂中1068ppm的EMS = 2.75mg EMS或50kg人的0.055mg/kg)时,我们得出基于口服摄入的安全系数为454。在小鼠、大鼠和猴子以及体外用人替代物进行的详细吸收、分布和代谢研究,使我们能够针对患者计算出的可能最高暴露量(AUC和C(max))来估计安全系数[拉夫,T.,比尔恩博克,H.,格奇,A.,兰普,T.,佩勒,A.,2009年a。动物和人体中甲磺酸乙酯药代动力学的体内和体外特征。毒理学快报;拉夫,T.,佩勒,A.,格林姆,H.P.,2009年b。患者EMS暴露的建模:将EMS在体外和动物中的药代动力学转化为患者情况。毒理学快报]。我们计算出基于总暴露量(AUC)的安全系数至少为28。这个较低的值是由于对人相对于小鼠、大鼠和猴子中EMS较长半衰期的保守预测。基于估计的人体C(max),受影响的维乐命患者的安全系数计算为370,因为C(max)主要取决于分布容积,而EMS在不同物种中的分布容积差异不大。我们认为基于总暴露量的安全系数构成一个最小值,因为关于亚阈值浓度下无误修复证据的考虑支持使用最高EMS浓度(C(max))而非AUC作为风险评估的基础。“真实值”很可能介于这两个数字之间,因为诸如修复酶可用性和相对于损伤的细胞周期状态等因素是重要参数,可能不完全支持仅基于C(max)估计的安全系数。EMS的潜在不良反应如癌症、出生缺陷和遗传效应被认为是其遗传毒性活性的后遗症。因此,阈值化的剂量反应关系也应适用于这些终点。我们还对HIV感染目标人群的具体疾病情况以及联合用药对EMS诱导的DNA损伤的易感性和修复能力的潜在影响进行了全面讨论。