Suppr超能文献

与认知的基线和纵向测量相关的脑萎缩。

Brain atrophy associated with baseline and longitudinal measures of cognition.

机构信息

San Francisco Veterans Affairs Medical Center, USA.

出版信息

Neurobiol Aging. 2011 Apr;32(4):572-80. doi: 10.1016/j.neurobiolaging.2009.04.011. Epub 2009 May 14.

Abstract

The overall goal was to identify patterns of brain atrophy associated with cognitive impairment and future cognitive decline in non-demented elders. Seventy-one participants were studied with structural MRI and neuropsychological testing at baseline and 1-year follow-up. Deformation-based morphometry was used to examine the relationship between regional baseline brain tissue volume with baseline and longitudinal measures of delayed verbal memory, semantic memory, and executive function. Smaller right hippocampal and entorhinal cortex (ERC) volumes at baseline were associated with worse delayed verbal memory performance at baseline while smaller left ERC volume was associated with greater longitudinal decline. Smaller left superior temporal cortex at baseline was associated with worse semantic memory at baseline, while smaller left temporal white and gray matter volumes were associated with greater semantic memory decline. Increased CSF and smaller frontal lobe volumes were associated with impaired executive function at baseline and greater longitudinal executive decline. These findings suggest that baseline volumes of prefrontal and temporal regions may underlie continuing cognitive decline due to aging, pathology, or both in non-demented elderly individuals.

摘要

总体目标是确定与认知障碍和非痴呆老年人未来认知能力下降相关的脑萎缩模式。71 名参与者在基线和 1 年随访时接受了结构 MRI 和神经心理学测试。采用基于变形的形态测量学来研究基线时局部脑组织体积与延迟口头记忆、语义记忆和执行功能的基线和纵向测量值之间的关系。基线时右侧海马体和内嗅皮层(ERC)体积较小与基线时延迟口头记忆表现较差有关,而左侧 ERC 体积较小与纵向下降较大有关。基线时左侧颞上回体积较小与基线时语义记忆较差有关,而左侧颞叶白质和灰质体积较小与语义记忆下降较大有关。CSF 增加和额叶体积较小与基线时执行功能受损以及纵向执行能力下降较大有关。这些发现表明,前额叶和颞叶区域的基线体积可能是由于衰老、病理或两者共同导致非痴呆老年人认知能力持续下降的基础。

相似文献

1
Brain atrophy associated with baseline and longitudinal measures of cognition.
Neurobiol Aging. 2011 Apr;32(4):572-80. doi: 10.1016/j.neurobiolaging.2009.04.011. Epub 2009 May 14.
2
The impact of glucose disorders on cognition and brain volumes in the elderly: the Sydney Memory and Ageing Study.
Age (Dordr). 2014 Apr;36(2):977-93. doi: 10.1007/s11357-013-9613-0. Epub 2014 Jan 9.
3
Longitudinal volumetric MRI change and rate of cognitive decline.
Neurology. 2005 Aug 23;65(4):565-71. doi: 10.1212/01.wnl.0000172913.88973.0d.
4
A decade of changes in brain volume and cognition.
Brain Imaging Behav. 2019 Apr;13(2):554-563. doi: 10.1007/s11682-018-9887-z.
5
Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment.
Neurobiol Aging. 2012 Feb;33(2):242-53. doi: 10.1016/j.neurobiolaging.2010.03.015. Epub 2010 May 14.
7
Entorhinal cortex atrophy differentiates Parkinson's disease patients with and without dementia.
Mov Disord. 2012 May;27(6):727-34. doi: 10.1002/mds.24938. Epub 2012 Mar 12.
8
Brain volume change and cognitive trajectories in aging.
Neuropsychology. 2018 May;32(4):436-449. doi: 10.1037/neu0000447. Epub 2018 Mar 1.
9
Brain tissue volumes in relation to cognitive function and risk of dementia.
Neurobiol Aging. 2010 Mar;31(3):378-86. doi: 10.1016/j.neurobiolaging.2008.04.008. Epub 2008 May 23.

引用本文的文献

2
Cortical lobar volume reductions associated with homocysteine-related subcortical brain atrophy and poorer cognition in healthy aging.
Front Aging Neurosci. 2024 Aug 7;16:1406394. doi: 10.3389/fnagi.2024.1406394. eCollection 2024.
7
Association between T1w/T2w ratio in white matter and cognitive function in Alzheimer's disease.
Sci Rep. 2024 Mar 27;14(1):7228. doi: 10.1038/s41598-024-57287-5.
9
Dual-task multicomponent exercise-cognitive intervention improved cognitive function and functional fitness in older adults.
Aging Clin Exp Res. 2023 Sep;35(9):1855-1863. doi: 10.1007/s40520-023-02481-0. Epub 2023 Jul 7.
10
Discovery of novel CSF biomarkers to predict progression in dementia using machine learning.
Sci Rep. 2023 Apr 21;13(1):6531. doi: 10.1038/s41598-023-33045-x.

本文引用的文献

1
Neuroimaging studies of the cerebellum: language, learning and memory.
Trends Cogn Sci. 1998 Sep 1;2(9):355-62. doi: 10.1016/s1364-6613(98)01211-x.
2
Two-year progression from mild cognitive impairment to dementia: to what extent do different definitions agree?
J Am Geriatr Soc. 2008 Aug;56(8):1424-33. doi: 10.1111/j.1532-5415.2008.01820.x. Epub 2008 Jul 24.
3
Mild cognitive impairment in the general population: occurrence and progression to Alzheimer disease.
Am J Geriatr Psychiatry. 2008 Jul;16(7):603-11. doi: 10.1097/JGP.0b013e3181753a64.
4
Age-related differences in regional brain volumes: a comparison of optimized voxel-based morphometry to manual volumetry.
Neurobiol Aging. 2009 Oct;30(10):1657-76. doi: 10.1016/j.neurobiolaging.2007.12.020. Epub 2008 Feb 13.
5
Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment.
Neuroimage. 2007 Oct 1;37(4):1122-31. doi: 10.1016/j.neuroimage.2007.06.016. Epub 2007 Jun 29.
7
Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease.
Neurology. 2007 Mar 13;68(11):828-36. doi: 10.1212/01.wnl.0000256697.20968.d7.
9
Semantic knowledge in mild cognitive impairment and mild Alzheimer's disease.
Cortex. 2006 Jul;42(5):675-84. doi: 10.1016/s0010-9452(08)70404-0.
10
Executive function and the frontal lobes: a meta-analytic review.
Neuropsychol Rev. 2006 Mar;16(1):17-42. doi: 10.1007/s11065-006-9002-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验