Suppr超能文献

一种新的用于多尖峰神经网络的监督学习算法及其在癫痫和发作检测中的应用。

A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection.

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Neural Netw. 2009 Dec;22(10):1419-31. doi: 10.1016/j.neunet.2009.04.003. Epub 2009 Apr 22.

Abstract

A new Multi-Spiking Neural Network (MuSpiNN) model is presented in which information from one neuron is transmitted to the next in the form of multiple spikes via multiple synapses. A new supervised learning algorithm, dubbed Multi-SpikeProp, is developed for training MuSpiNN. The model and learning algorithm employ the heuristic rules and optimum parameter values presented by the authors in a recent paper that improved the efficiency of the original single-spiking Spiking Neural Network (SNN) model by two orders of magnitude. The classification accuracies of MuSpiNN and Multi-SpikeProp are evaluated using three increasingly more complicated problems: the XOR problem, the Fisher iris classification problem, and the epilepsy and seizure detection (EEG classification) problem. It is observed that MuSpiNN learns the XOR problem in twice the number of epochs compared with the single-spiking SNN model but requires only one-fourth the number of synapses. For the iris and EEG classification problems, a modular architecture is employed to reduce each 3-class classification problem to three 2-class classification problems and improve the classification accuracy. For the complicated EEG classification problem a classification accuracy in the range of 90.7%-94.8% was achieved, which is significantly higher than the 82% classification accuracy obtained using the single-spiking SNN with SpikeProp.

摘要

提出了一种新的多尖峰神经网络(MuSpiNN)模型,其中一个神经元的信息通过多个突触以多个尖峰的形式传递到下一个神经元。开发了一种新的监督学习算法,称为多尖峰传播(Multi-SpikeProp),用于训练 MuSpiNN。该模型和学习算法采用了作者在最近的一篇论文中提出的启发式规则和最佳参数值,该论文将原始的单尖峰尖峰神经网络(SNN)模型的效率提高了两个数量级。使用三个越来越复杂的问题评估 MuSpiNN 和 Multi-SpikeProp 的分类准确性:异或问题、Fisher 鸢尾花分类问题和癫痫和癫痫发作检测(EEG 分类)问题。观察到 MuSpiNN 学习异或问题所需的时期数是单尖峰 SNN 模型的两倍,但所需的突触数仅为其四分之一。对于虹膜和 EEG 分类问题,采用模块化架构将每个 3 类分类问题减少到三个 2 类分类问题,从而提高了分类准确性。对于复杂的 EEG 分类问题,实现了 90.7%-94.8%的分类准确性,明显高于使用 SpikeProp 的单尖峰 SNN 获得的 82%的分类准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验