Suppr超能文献

基于脉冲神经网络控制的受脑启发学习规则:教程

Brain-inspired learning rules for spiking neural network-based control: a tutorial.

作者信息

Lee Choongseop, Park Yuntae, Yoon Sungmin, Lee Jiwoon, Cho Youngho, Park Cheolsoo

机构信息

Department of Computer Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea.

Department of Electrical and Communication Engineering, Daelim University College, Anyang, 13916 Republic of Korea.

出版信息

Biomed Eng Lett. 2024 Dec 2;15(1):37-55. doi: 10.1007/s13534-024-00436-6. eCollection 2025 Jan.

Abstract

Robotic systems rely on spatio-temporal information to solve control tasks. With advancements in deep neural networks, reinforcement learning has significantly enhanced the performance of control tasks by leveraging deep learning techniques. However, as deep neural networks grow in complexity, they consume more energy and introduce greater latency. This complexity hampers their application in robotic systems that require real-time data processing. To address this issue, spiking neural networks, which emulate the biological brain by transmitting spatio-temporal information through spikes, have been developed alongside neuromorphic hardware that supports their operation. This paper reviews brain-inspired learning rules and examines the application of spiking neural networks in control tasks. We begin by exploring the features and implementations of biologically plausible spike-timing-dependent plasticity. Subsequently, we investigate the integration of a global third factor with spike-timing-dependent plasticity and its utilization and enhancements in both theoretical and applied research. We also discuss a method for locally applying a third factor that sophisticatedly modifies each synaptic weight through weight-based backpropagation. Finally, we review studies utilizing these learning rules to solve control tasks using spiking neural networks.

摘要

机器人系统依靠时空信息来解决控制任务。随着深度神经网络的发展,强化学习通过利用深度学习技术显著提高了控制任务的性能。然而,随着深度神经网络复杂度的增加,它们消耗更多能量并引入更大延迟。这种复杂性阻碍了它们在需要实时数据处理的机器人系统中的应用。为了解决这个问题,尖峰神经网络应运而生,它通过尖峰传输时空信息来模拟生物大脑,同时还开发了支持其运行的神经形态硬件。本文回顾了受大脑启发的学习规则,并研究了尖峰神经网络在控制任务中的应用。我们首先探讨生物学上合理的基于尖峰时间的可塑性的特征和实现。随后,我们研究了全局第三因素与基于尖峰时间的可塑性的整合及其在理论和应用研究中的利用和增强。我们还讨论了一种通过基于权重的反向传播来局部应用第三因素以精细修改每个突触权重的方法。最后,我们回顾了利用这些学习规则使用尖峰神经网络解决控制任务的研究。

相似文献

本文引用的文献

1
Opportunities for neuromorphic computing algorithms and applications.神经形态计算算法与应用的机遇。
Nat Comput Sci. 2022 Jan;2(1):10-19. doi: 10.1038/s43588-021-00184-y. Epub 2022 Jan 31.
2
Soft tissue surgical robot for minimally invasive surgery: a review.用于微创手术的软组织手术机器人:综述
Biomed Eng Lett. 2023 Oct 13;13(4):561-569. doi: 10.1007/s13534-023-00326-3. eCollection 2023 Nov.
3
Brain inspired path planning algorithms for drones.用于无人机的受大脑启发的路径规划算法。
Front Neurorobot. 2023 Mar 3;17:1111861. doi: 10.3389/fnbot.2023.1111861. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验