Suppr超能文献

精确贝叶斯二分类:贝叶斯分类的快速替代方法及其在神经反应分析中的应用

Exact Bayesian bin classification: a fast alternative to Bayesian classification and its application to neural response analysis.

作者信息

Endres D, Földiák P

机构信息

School of Psychology, University of St. Andrews, St Andrews, KY16 9JP, UK.

出版信息

J Comput Neurosci. 2008 Feb;24(1):21-35. doi: 10.1007/s10827-007-0039-5. Epub 2007 Jun 14.

Abstract

We investigate the general problem of signal classification and, in particular, that of assigning stimulus labels to neural spike trains recorded from single cortical neurons. Finding efficient ways of classifying neural responses is especially important in experiments involving rapid presentation of stimuli. We introduce a fast, exact alternative to Bayesian classification. Instead of estimating the class-conditional densities p(x|y) (where x is a scalar function of the feature[s], y the class label) and converting them to P(y|x) via Bayes' theorem, this probability is evaluated directly and without the need for approximations. This is achieved by integrating over all possible binnings of x with an upper limit on the number of bins. Computational time is quadratic in both the number of observed data points and the number of bins. The algorithm also allows for the computation of feedback signals, which can be used as input to subsequent stages of inference, e.g. neural network training. Responses of single neurons from high-level visual cortex (area STSa) to rapid sequences of complex visual stimuli are analysed. Information latency and response duration increase nonlinearly with presentation duration, suggesting that neural processing speeds adapt to presentation speeds.

摘要

我们研究信号分类的一般问题,特别是给从单个皮层神经元记录的神经尖峰序列分配刺激标签的问题。在涉及快速呈现刺激的实验中,找到有效的神经反应分类方法尤为重要。我们引入了一种快速、精确的贝叶斯分类替代方法。该方法不是估计类条件密度p(x|y)(其中x是特征的标量函数,y是类标签),然后通过贝叶斯定理将其转换为P(y|x),而是直接评估这个概率,无需近似计算。这是通过对x的所有可能分箱进行积分实现的,分箱数量有上限。计算时间在观测数据点数量和分箱数量上都是二次的。该算法还允许计算反馈信号,这些信号可作为后续推理阶段(如神经网络训练)的输入。我们分析了来自高级视觉皮层(STSa区)的单个神经元对复杂视觉刺激快速序列的反应。信息潜伏期和反应持续时间随呈现持续时间非线性增加,这表明神经处理速度适应呈现速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验