Suppr超能文献

一项基于深度学习的淀粉样蛋白阳性阿尔茨海默病诊断分类系统的病例对照临床试验。

A Case-Control Clinical Trial on a Deep Learning-Based Classification System for Diagnosis of Amyloid-Positive Alzheimer's Disease.

作者信息

Bae Jong Bin, Lee Subin, Oh Hyunwoo, Sung Jinkyeong, Lee Dongsoo, Han Ji Won, Kim Jun Sung, Kim Jae Hyoung, Kim Sang Eun, Kim Ki Woong

机构信息

Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.

Department of Psychiatry, Seoul National University, College of Medicine, Seoul, Republic of Korea.

出版信息

Psychiatry Investig. 2023 Dec;20(12):1195-1203. doi: 10.30773/pi.2023.0052. Epub 2023 Dec 18.

Abstract

OBJECTIVE

A deep learning-based classification system (DLCS) which uses structural brain magnetic resonance imaging (MRI) to diagnose Alzheimer's disease (AD) was developed in a previous recent study. Here, we evaluate its performance by conducting a single-center, case-control clinical trial.

METHODS

We retrospectively collected T1-weighted brain MRI scans of subjects who had an accompanying measure of amyloid-beta (Aβ) positivity based on a 18F-florbetaben positron emission tomography scan. The dataset included 188 Aβ-positive patients with mild cognitive impairment or dementia due to AD, and 162 Aβ-negative controls with normal cognition. We calculated the sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve (AUC) of the DLCS in the classification of Aβ-positive AD patients from Aβ-negative controls.

RESULTS

The DLCS showed excellent performance, with sensitivity, specificity, positive predictive value, negative predictive value, and AUC of 85.6% (95% confidence interval [CI], 79.8-90.0), 90.1% (95% CI, 84.5-94.2), 91.0% (95% CI, 86.3-94.1), 84.4% (95% CI, 79.2-88.5), and 0.937 (95% CI, 0.911-0.963), respectively.

CONCLUSION

The DLCS shows promise in clinical settings where it could be routinely applied to MRI scans regardless of original scan purpose to improve the early detection of AD.

摘要

目的

在最近的一项前期研究中,开发了一种基于深度学习的分类系统(DLCS),该系统利用结构性脑磁共振成像(MRI)来诊断阿尔茨海默病(AD)。在此,我们通过开展一项单中心病例对照临床试验来评估其性能。

方法

我们回顾性收集了基于18F-氟代贝他班正电子发射断层扫描有淀粉样蛋白β(Aβ)阳性伴随测量值的受试者的T1加权脑MRI扫描图像。该数据集包括188例因AD导致轻度认知障碍或痴呆的Aβ阳性患者,以及162例认知正常的Aβ阴性对照者。我们计算了DLCS在区分Aβ阳性AD患者与Aβ阴性对照者时的灵敏度、特异度、阳性预测值、阴性预测值以及受试者工作特征曲线下面积(AUC)。

结果

DLCS表现出优异的性能,灵敏度、特异度、阳性预测值、阴性预测值以及AUC分别为85.6%(95%置信区间[CI],79.8 - 90.0)、90.1%(95% CI,84.5 - 94.2)、91.0%(95% CI,86.3 - 94.1)、84.4%(95% CI,79.2 - 88.5)和0.937(95% CI,0.911 - 0.963)。

结论

DLCS在临床环境中显示出应用前景,在这种环境下,无论原始扫描目的如何,它都可常规应用于MRI扫描,以改善AD的早期检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf81/10758320/3377ad9d9600/pi-2023-0052f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验