Suppr超能文献

一种参与克氏锥虫粘蛋白型O-糖基化起始过程的UDP-葡萄糖胺:多肽α-N-乙酰葡萄糖胺基转移酶的分子分析

Molecular analysis of a UDP-GlcNAc:polypeptide alpha-N-acetylglucosaminyltransferase implicated in the initiation of mucin-type O-glycosylation in Trypanosoma cruzi.

作者信息

Heise Norton, Singh Divyendu, van der Wel Hanke, Sassi Slim O, Johnson Jennifer M, Feasley Christa L, Koeller Carolina M, Previato Jose O, Mendonça-Previato Lucia, West Christopher M

机构信息

Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

出版信息

Glycobiology. 2009 Aug;19(8):918-33. doi: 10.1093/glycob/cwp068. Epub 2009 May 25.

Abstract

Trypanosoma cruzi, the causative agent of Chagas disease, is surrounded by a mucin coat that plays important functions in parasite survival/invasion and is extensively O-glycosylated by Golgi and cell surface glycosyltransferases. The addition of the first sugar, alpha-N-acetylglucosamine (GlcNAc) linked to Threonine (Thr), is catalyzed by a polypeptide alpha-GlcNAc-transferase (pp-alphaGlcNAcT) which is unstable to purification. Here, a comparison of the genomes of T. cruzi and Dictyostelium discoideum, an amoebazoan which also forms this linkage, identified two T. cruzi genes (TcOGNT1 and TcOGNT2) that might encode this activity. Though neither was able to complement the Dictyostelium gene, expression in the trypanosomatid Leishmania tarentolae resulted in elevated levels of UDP-[(3)H]GlcNAc:Thr-peptide GlcNAc-transferase activity and UDP-[(3)H]GlcNAc breakdown activity. The ectodomain of TcOGNT2 was expressed and the secreted protein was found to retain both activities after extensive purification away from other proteins and the endogenous activity. Product analysis showed that (3)H was transferred as GlcNAc to a hydroxyamino acid, and breakdown was due to hydrolysis. Both activities were specific for UDP-GlcNAc relative to UDP-GalNAc and were abolished by active site point mutations that inactivate a related Dictyostelium enzyme and distantly related animal pp-alphaGalNAcTs. The peptide preference and the alkaline pH optimum were indistinguishable from those of the native activity in T. cruzi microsomes. The results suggest that mucin-type O-glycosylation in T. cruzi is initiated by conserved members of CAZy family GT60, which is homologous to the GT27 family of animal pp-alphaGalNAcTs that initiate mucin-type O-glycosylation in animals.

摘要

克氏锥虫是恰加斯病的病原体,其周围有一层粘蛋白外壳,该外壳在寄生虫的存活/入侵中发挥着重要作用,并且被高尔基体和细胞表面糖基转移酶广泛地进行O-糖基化修饰。与苏氨酸(Thr)相连的第一个糖,即α-N-乙酰葡糖胺(GlcNAc)的添加,是由一种多肽α-葡糖胺基转移酶(pp-αGlcNAcT)催化的,该酶在纯化过程中不稳定。在这里,对克氏锥虫和盘基网柄菌(一种也形成这种连接的变形虫)的基因组进行比较,鉴定出两个可能编码这种活性的克氏锥虫基因(TcOGNT1和TcOGNT2)。尽管这两个基因都不能补充盘基网柄菌的基因,但在锥虫利什曼原虫中表达会导致UDP-[(3)H]GlcNAc:苏氨酸-肽葡糖胺基转移酶活性和UDP-[(3)H]GlcNAc分解活性升高。TcOGNT2的胞外结构域被表达,并且在经过大量纯化去除其他蛋白质和内源性活性后,发现分泌的蛋白质保留了这两种活性。产物分析表明,(3)H作为GlcNAc转移到了一个羟基氨基酸上,并且分解是由于水解作用。相对于UDP-GalNAc,这两种活性对UDP-GlcNAc具有特异性,并且被使相关盘基网柄菌酶和远缘动物pp-αGalNAcTs失活的活性位点点突变所消除。其肽偏好和碱性pH最佳值与克氏锥虫微粒体中的天然活性无法区分。结果表明,克氏锥虫中的粘蛋白型O-糖基化是由CAZy家族GT60的保守成员启动的,该家族与在动物中启动粘蛋白型O-糖基化的动物pp-αGalNAcTs的GT27家族同源。

相似文献

7
Kinetic analysis of a Golgi UDP-GlcNAc:polypeptide-Thr/Ser N-acetyl-alpha-glucosaminyltransferase from Dictyostelium.
Glycobiology. 2005 May;15(5):489-500. doi: 10.1093/glycob/cwi034. Epub 2004 Dec 22.
9
Structural features affecting trafficking, processing, and secretion of Trypanosoma cruzi mucins.
J Biol Chem. 2012 Jul 27;287(31):26365-76. doi: 10.1074/jbc.M112.354696. Epub 2012 Jun 15.

引用本文的文献

1
Common and unique features of glycosylation and glycosyltransferases in African trypanosomes.
Biochem J. 2022 Sep 16;479(17):1743-1758. doi: 10.1042/BCJ20210778.
2
Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective.
Mol Cell Proteomics. 2021;20:100024. doi: 10.1074/mcp.R120.002263. Epub 2021 Jan 6.
3
The Glycan Structure of mucins Depends on the Host. Insights on the Chameleonic Galactose.
Molecules. 2020 Aug 27;25(17):3913. doi: 10.3390/molecules25173913.
7
Protein - and -Glycosylation pathways in and .
Parasitology. 2019 Dec;146(14):1755-1766. doi: 10.1017/S0031182019000040. Epub 2019 Feb 18.
8
Trypanosoma cruzi 13C-labeled O-Glycan standards for mass spectrometry.
Glycobiology. 2019 Apr 1;29(4):280-284. doi: 10.1093/glycob/cwy111.
9
Rapid screening of sugar-nucleotide donor specificities of putative glycosyltransferases.
Glycobiology. 2017 Mar 1;27(3):206-212. doi: 10.1093/glycob/cww114.
10
Identification of a Golgi-localized UDP-N-acetylglucosamine transporter in Trypanosoma cruzi.
BMC Microbiol. 2015 Nov 21;15:269. doi: 10.1186/s12866-015-0601-7.

本文引用的文献

1
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
2
The challenges of Chagas Disease-- grim outlook or glimmer of hope.
PLoS Med. 2007 Dec;4(12):e332. doi: 10.1371/journal.pmed.0040332.
3
Chagas disease: what is known and what is needed--a background article.
Mem Inst Oswaldo Cruz. 2007 Oct 30;102 Suppl 1:113-22. doi: 10.1590/s0074-02762007000900018.
4
A UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase is required for epithelial tube formation.
J Biol Chem. 2007 Jan 5;282(1):606-14. doi: 10.1074/jbc.M606268200. Epub 2006 Nov 10.
5
Natural human immunity to trypanosomes.
Parasitol Today. 1998 Sep;14(9):354-9. doi: 10.1016/s0169-4758(98)01295-2.
8
Molecular basis of mammalian cell invasion by Trypanosoma cruzi.
An Acad Bras Cienc. 2006 Mar;78(1):87-111. doi: 10.1590/s0001-37652006000100010. Epub 2006 Mar 8.
9
Trypanosoma cruzi surface mucins: host-dependent coat diversity.
Nat Rev Microbiol. 2006 Mar;4(3):229-36. doi: 10.1038/nrmicro1351.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验