Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21 941 902, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, Brazil,
Glycoconj J. 2013 Oct;30(7):659-66. doi: 10.1007/s10719-013-9469-7. Epub 2013 Feb 21.
Trypanosoma cruzi, an intracellular protozoan etiologic agent of Chagas disease is covered by a dense coat of mucin-type glycoproteins, which is important to promote the parasite entry and persistence in the mammalian host cells. The O-glycosylation of T. cruzi mucins (Tc-mucins) is initiated by enzymatic addition of α-O-N-acetylglucosamine (GlcNAc) to threonine (Thr) by the UDP-GlcNAc:polypeptide α-N-acetylglucosaminyltransferase (pp-α-GlcNAcT) in the Golgi. The Tc-mucin is characterized by the presence of a high structural diversity of O-linked oligosaccharides found among different parasite strains, comprising two O-glycan Cores. In the Core 1, from strains principally associated with the domestic transmission cycle of Chagas disease, the GlcNAc O-4 is substituted with a β-galactopyranose (βGalp) unit, and in the most complex oligosaccharides the GlcNAc O-6 is further processed by the addition of β1 → 2-linked Galp residues creating a short linear Galp-containing chain. In the Core 2 structures, expressed by strains isolated from T. cruzi sylvatic hosts, the GlcNAc O-4 carries a β-galactofuranose (βGalf) unit and the GlcNAc O-6 can carry a branched Galpβ1 → 3[Galpβ1 → 2]Galpβ1 → 6 motif. The O-glycans carrying nonreducing terminal βGalp are available for sialylation by a surface T. cruzi trans-sialidase activity. Based on structural results, this review summarizes available data on the highly conserved process, which adds the GlcNAc unit in α-linkage to Thr residues the basis of the post-translational modification system in T. cruzi mucins. In addition, a mechanism unique employed by the parasite to transfer exogenous sialic acid residues to Tc-mucins is presented.
克氏锥虫是恰加斯病的一种细胞内原生动物病原体,其表面覆盖着一层密集的粘蛋白型糖蛋白,这对于促进寄生虫进入和在哺乳动物宿主细胞中持续存在非常重要。克氏锥虫粘蛋白(Tc-mucins)的 O-糖基化是由 UDP-GlcNAc:多肽α-N-乙酰氨基葡萄糖基转移酶(pp-α-GlcNAcT)在高尔基体中催化将α-O-N-乙酰氨基葡萄糖(GlcNAc)添加到苏氨酸(Thr)的 Thr 的 O-连接上开始的。Tc-mucin 的特点是存在结构高度多样化的 O-连接寡糖,这些寡糖存在于不同的寄生虫株之间,包括两个 O-聚糖核心。在核心 1 中,来自与恰加斯病的国内传播周期主要相关的菌株的 GlcNAc O-4 被β-半乳糖吡喃糖(βGalp)单元取代,而在最复杂的寡糖中,GlcNAc O-6 进一步通过添加β1→2 连接的 Galp 残基进行加工,从而形成短的线性含 Galp 链。在核心 2 结构中,由来自克氏锥虫森林宿主的分离株表达,GlcNAc O-4 带有β-半乳糖呋喃糖(βGalf)单元,而 GlcNAc O-6 可以带有分支的 Galpβ1→3[Galpβ1→2]Galpβ1→6 基序。带有非还原末端βGalp 的 O-聚糖可用于表面 T. cruzi 转涎酸酶活性的唾液酸化。基于结构结果,本文综述了在高度保守的过程中获得的现有数据,该过程在 T. cruzi 粘蛋白的翻译后修饰系统中添加了α-连接的 GlcNAc 单元到 Thr 残基上。此外,还提出了寄生虫用于将外源性唾液酸残基转移到 Tc-mucins 的独特机制。