Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
Glycobiology. 2019 Sep 20;29(10):705-714. doi: 10.1093/glycob/cwz049.
Skp1 is hydroxylated by an O2-dependent prolyl hydroxylase (PhyA) that contributes to O2-sensing in the social amoeba Dictyostelium and the mammalian pathogen Toxoplasma gondii. HO-Skp1 is subject to glycosylation and the resulting pentasaccharide affects Skp1 conformation in a way that influences association of Skp1 with F-box proteins, and potentially the assembly of E3(SCF) ubiquitin ligase complexes that mediate the polyubiquitination of target proteins that are degraded in the 26S-proteasome. To investigate the conservation and specificity of these modifications, we analyzed proteins from the oomycete Pythium ultimum, an important crop plant pathogen. Putative coding sequences for Pythium's predicted PhyA and first glycosyltransferase in the predicted five-enzyme pathway, a GlcNAc-transferase (Gnt1), predict a bifunctional enzyme (Phgt) that, when expressed in Dictyostelium, rescued a knockout of phyA but not gnt1. Though recombinant Phgt was also unable to glycosylate Dictyostelium HO-Skp1, it could hydrolyze UDP-GlcNAc and modify a synthetic hydroxypeptide from Dictyostelium Skp1. Pythium encodes two highly similar Skp1 isoforms, but only Skp1A was efficiently hydroxylated and glycosylated in vitro. While kinetic analysis revealed no evidence for processive processing of Skp1, the physical linkage of the two activities implies dedication to Skp1 in vivo. These findings indicate a widespread occurrence of the Skp1 modification pathway across protist phylogeny, suggest that both Gnt1 and PhyA are specific for Skp1 and indicate that the second Skp1 provides a bypass mechanism for O2-regulation in Pythium and other protists that conserve this gene.
Skp1 被一种依赖 O2 的脯氨酰羟化酶(PhyA)羟化,该酶有助于阿米巴和哺乳动物病原体肉孢子虫中的 O2 感应。HO-Skp1 受到糖基化的影响,生成的五糖影响 Skp1 的构象,从而影响 Skp1 与 F-box 蛋白的结合,并且可能影响 E3(SCF)泛素连接酶复合物的组装,该复合物介导靶蛋白的多泛素化,这些靶蛋白在 26S-蛋白酶体中降解。为了研究这些修饰的保守性和特异性,我们分析了卵菌纲疫霉属的蛋白质,这是一种重要的作物病原菌。预测的 PhyA 和预测的五酶途径中的第一个糖基转移酶(Gnt1)的推测编码序列,预测了一种双功能酶(Phgt),当在变形虫中表达时,该酶挽救了 phyA 的敲除,但不能挽救 gnt1 的敲除。尽管重组 Phgt 也不能糖基化变形虫 HO-Skp1,但它可以水解 UDP-GlcNAc 并修饰来自变形虫 Skp1 的合成羟肽。疫霉属编码两种高度相似的 Skp1 同工型,但只有 Skp1A 能够在体外有效地羟化和糖基化。虽然动力学分析没有发现 Skp1 连续加工的证据,但这两种活性的物理联系表明它们在体内专门用于 Skp1。这些发现表明,Skp1 修饰途径在原生动物系统发育中广泛存在,表明 Gnt1 和 PhyA 都特异性地作用于 Skp1,并表明第二个 Skp1 为 O2 调节提供了一种绕过机制在其他保留此基因的原生动物中。