Suppr超能文献

脊柱状的金突改善了神经元在微电子产品表面的黏附和电耦合。

Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices.

机构信息

Department of Neurobiology, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

J R Soc Interface. 2009 Dec 6;6(41):1153-65. doi: 10.1098/rsif.2009.0087. Epub 2009 May 27.

Abstract

Interfacing neurons with micro- and nano-electronic devices has been a subject of intense study over the last decade. One of the major problems in assembling efficient neuro-electronic hybrid systems is the weak electrical coupling between the components. This is mainly attributed to the fundamental property of living cells to form and maintain an extracellular cleft between the plasma membrane and any substrate to which they adhere. This cleft shunts the current generated by propagating action potentials and thus reduces the signal-to-noise ratio. Reducing the cleft thickness, and thereby increasing the seal resistance formed between the neurons and the sensing surface, is thus a challenge and could improve the electrical coupling coefficient. Using electron microscopic analysis and field potential recordings, we examined here the use of gold micro-structures that mimic dendritic spines in their shape and dimensions to improve the adhesion and electrical coupling between neurons and micro-electronic devices. We found that neurons cultured on a gold-spine matrix, functionalized by a cysteine-terminated peptide with a number of RGD repeats, readily engulf the spines, forming tight apposition. The recorded field potentials of cultured Aplysia neurons are significantly larger using gold-spine electrodes in comparison with flat electrodes.

摘要

在过去的十年中,将神经元与微纳电子设备进行接口连接一直是一个热门研究课题。在组装高效的神经电子混合系统时,主要问题之一是组件之间的电耦合较弱。这主要归因于活细胞的基本特性,即它们在质膜和任何附着的基质之间形成并维持细胞外裂隙。该裂隙会分流传播动作电位产生的电流,从而降低信号噪声比。因此,减小裂隙厚度,从而增加神经元和传感表面之间形成的密封电阻,是一项挑战,并且可以提高电耦合系数。使用电子显微镜分析和场电位记录,我们在这里研究了使用形状和尺寸类似于树突棘的金微结构来改善神经元和微电子设备之间的粘附和电耦合。我们发现,用具有多个 RGD 重复序列的半胱氨酸末端肽官能化的金棘突基质培养的神经元很容易吞噬棘突,形成紧密的贴合。与平面电极相比,使用金棘突电极记录的培养的 Aplysia 神经元的场电位明显更大。

相似文献

1
Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices.
J R Soc Interface. 2009 Dec 6;6(41):1153-65. doi: 10.1098/rsif.2009.0087. Epub 2009 May 27.
2
Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms.
J Neural Eng. 2009 Dec;6(6):066009. doi: 10.1088/1741-2560/6/6/066009. Epub 2009 Nov 17.
4
Peptide-functionalized microfabricated structures for improved on-chip neuronal adhesion.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1833-6. doi: 10.1109/IEMBS.2008.4649536.
5
Equivalent Circuit of the Neuro-Electronic Junction for Signal Recordings From Planar and Engulfed Micro-Nano-Electrodes.
IEEE Trans Biomed Circuits Syst. 2018 Feb;12(1):3-12. doi: 10.1109/TBCAS.2017.2749451. Epub 2017 Oct 5.
8
Depletion type floating gate p-channel MOS transistor for recording action potentials generated by cultured neurons.
Biosens Bioelectron. 2004 Jul 15;19(12):1703-9. doi: 10.1016/j.bios.2004.01.021.
10
Cell adhesion and detachment on gold surfaces modified with a thiol-functionalized RGD peptide.
Biomaterials. 2011 Oct;32(30):7286-96. doi: 10.1016/j.biomaterials.2011.05.077. Epub 2011 Aug 3.

引用本文的文献

1
Interfacing with the Brain: How Nanotechnology Can Contribute.
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.
3
Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors.
Microsyst Nanoeng. 2024 Jul 11;10:96. doi: 10.1038/s41378-024-00692-7. eCollection 2024.
5
Streamlining the interface between electronics and neural systems for bidirectional electrochemical communication.
Chem Sci. 2023 Apr 14;14(17):4463-4479. doi: 10.1039/d3sc00338h. eCollection 2023 May 3.
6
Use of an invertebrate animal model () to develop novel neural interfaces for neuromodulation.
Front Neurosci. 2022 Dec 22;16:1080027. doi: 10.3389/fnins.2022.1080027. eCollection 2022.
7
Low Surface Potential with Glycoconjugates Determines Insect Cell Adhesion at Room Temperature.
J Phys Chem Lett. 2022 Oct 13;13(40):9494-9500. doi: 10.1021/acs.jpclett.2c01673. Epub 2022 Oct 6.
8
Cellular nanointerface of vertical nanostructure arrays and its applications.
Nanoscale Adv. 2022 Feb 21;4(8):1844-1867. doi: 10.1039/d1na00775k. eCollection 2022 Apr 12.
9
Shell microelectrode arrays (MEAs) for brain organoids.
Sci Adv. 2022 Aug 19;8(33):eabq5031. doi: 10.1126/sciadv.abq5031. Epub 2022 Aug 17.
10
Synthesis of encapsulated ZnO nanowires provide low impedance alternatives for microelectrodes.
PLoS One. 2022 Jun 16;17(6):e0270164. doi: 10.1371/journal.pone.0270164. eCollection 2022.

本文引用的文献

1
Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution.
Histochem Cell Biol. 2008 Nov;130(5):877-89. doi: 10.1007/s00418-008-0500-1. Epub 2008 Sep 16.
2
Adhesion dynamics of porcine esophageal fibroblasts on extracellular matrix protein-functionalized poly(lactic acid).
Biomed Mater. 2008 Mar;3(1):015014. doi: 10.1088/1748-6041/3/1/015014. Epub 2008 Mar 3.
3
Fusion, fission, and secretion during phagocytosis.
Physiology (Bethesda). 2007 Dec;22:366-72. doi: 10.1152/physiol.00028.2007.
5
Molecular engineering of cellular environments: cell adhesion to nano-digital surfaces.
Methods Cell Biol. 2007;83:89-111. doi: 10.1016/S0091-679X(07)83005-6.
6
Transmission electron microscopy study of the cell-sensor interface.
J R Soc Interface. 2008 Feb 6;5(19):213-22. doi: 10.1098/rsif.2007.1094.
8
Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn.
Mol Membr Biol. 2007 May-Jun;24(3):243-55. doi: 10.1080/09687860601141730.
10
Tumor targeting by surface-modified protein microspheres.
J Am Chem Soc. 2006 Mar 22;128(11):3472-3. doi: 10.1021/ja0544455.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验