Suppr超能文献

用于体外细胞外和细胞内电生理记录的具有亚微米级三维金柱的生物电子学多材料电流体动力学打印

Multi-material Electrohydrodynamic Printing of Bioelectronics with Sub-Microscale 3D Gold Pillars for In Vitro Extra- and Intra-Cellular Electrophysiological Recordings.

作者信息

Gu Bingsong, Ma Qihang, Li Jiaxin, Xu Wangkai, Xie Yuke, Lu Peng, Yu Kun, Huo Ziyao, Li Xiao, Peng Jianhua, Jiang Yong, Li Dichen, He Jiankang

机构信息

State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

出版信息

Adv Sci (Weinh). 2025 Mar;12(9):e2407969. doi: 10.1002/advs.202407969. Epub 2025 Jan 10.

Abstract

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings. EHDP is employed to fabricate conductive circuits for signal transmission, which are passivated by polyimide via extrusion-based printing. Laser-assisted EHDP is developed to produce 3D gold pillars featuring a diameter of 0.64 ± 0.04 µm. The 3D gold pillars demonstrate stable conductivity under the cell-culture environment. Living cells can conformally grow onto these sub-microscale 3D pillars with a height below 5 µm, which facilitates the highly-sensitive recording of extracellular signals with amplitudes <15 µV. The 3D pillars can apply electroporation currents to reversibly open the cellular membrane for intracellular recording, facilitating the measurement of subtle cellular electrophysiological activities. As a proof-of-concept demonstration, fully-printed chips with multiple culturing chambers and sensing bioelectronics are fabricated for zone-specific electrophysiological recording in drug testing. The proposed multi-material EHDP strategy enables rapid prototyping of organ-on-a-chip systems with 3D bioelectronics for high-quality electrophysiological recordings.

摘要

微纳尺度的3D生物电极在电活性细胞的电生理记录方面越来越受到关注。尽管与传统微加工相比,3D打印已显示出灵活制造3D生物电子器件的潜力,但相对较低的分辨率限制了打印生物电极用于高质量信号监测。在此,提出了一种新颖的多材料电流体动力打印(EHDP)策略,以制造具有亚微米级3D金柱的生物电子器件用于体外电生理记录。EHDP用于制造信号传输的导电电路,这些电路通过基于挤出打印的聚酰亚胺进行钝化。开发了激光辅助EHDP以生产直径为0.64±0.04μm的3D金柱。3D金柱在细胞培养环境下表现出稳定的导电性。活细胞可以共形地生长在这些高度低于5μm的亚微米级3D柱上,这有助于对幅度<15μV的细胞外信号进行高灵敏度记录。3D柱可以施加电穿孔电流以可逆地打开细胞膜进行细胞内记录,便于测量细微的细胞电生理活动。作为概念验证演示,制造了具有多个培养室和传感生物电子器件的全打印芯片,用于药物测试中的区域特异性电生理记录。所提出的多材料EHDP策略能够快速原型制造具有3D生物电子器件的芯片器官系统,用于高质量的电生理记录。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d8/11884540/53ca28c1042b/ADVS-12-2407969-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验