Suppr超能文献

一种多线索学习方法作为理解和改进足球裁判决策的基础。

A multiple-cue learning approach as the basis for understanding and improving soccer referees' decision making.

作者信息

Plessner Henning, Schweizer Geoffrey, Brand Ralf, O'Hare David

机构信息

Institute of Psychology 1, University of Leipzig, Leipzig, Germany.

出版信息

Prog Brain Res. 2009;174:151-8. doi: 10.1016/S0079-6123(09)01313-2.

Abstract

A significant proportion of all referee decisions during a soccer match are about fouls and misconduct. We argue that most of these decisions can be considered as a perceptual-categorization task in which the referee has to categorize a set of features into two discrete classes (foul/no-foul). Due to the dynamic nature of tackling situations in football, these features share a probabilistic rather that a deterministic relationship with the decision criteria. Accordingly, these processes can be studied on the basis of a multiple-cue learning framework as proposed by Brunswick (1955), which focuses among others on how people learn from repeated exposure to probabilistic information. Such learning processes have been studied on a wide range of tasks, but until now not (to our knowledge) in the area of judging sport performance. We suggest that decision accuracy of referees can be improved by creating a learning environment that fits the requirements of this theoretical perspective.

摘要

在一场足球比赛中,所有裁判判罚决定的很大一部分都与犯规和不当行为有关。我们认为,这些判罚决定大多可被视为一种感知分类任务,在该任务中裁判必须将一组特征归类为两个离散的类别(犯规/未犯规)。由于足球比赛中铲球情况的动态性质,这些特征与判罚标准之间存在概率性而非确定性的关系。因此,可以基于布伦斯维克(1955年)提出的多线索学习框架来研究这些过程,该框架尤其关注人们如何从反复接触概率信息中学习。此类学习过程已在广泛的任务中得到研究,但据我们所知,到目前为止在评判运动表现领域尚未进行过研究。我们建议,通过创建一个符合这一理论视角要求的学习环境,可以提高裁判的判罚准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验