Suppr超能文献

小鼠胚胎中滋养外胚层和内细胞团谱系的建立。

Establishment of trophectoderm and inner cell mass lineages in the mouse embryo.

机构信息

Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. Biosciences Building 163 Honolulu, HI 96813, USA.

出版信息

Mol Reprod Dev. 2009 Nov;76(11):1019-32. doi: 10.1002/mrd.21057.

Abstract

The first cell lineage specification in mouse embryo development is the formation of trophectoderm (TE) and inner cell mass (ICM) of the blastocyst. This article is to review and discuss the current knowledge on the cellular and molecular mechanisms of this particular event. Several transcription factors have been identified as the critical regulators of the formation or maintenance of the two cell lineages. The establishment of TE manifests as the formation of epithelium, and is dependent on many structural and regulatory components that are commonly found and that function in many epithelial tissues. Distinct epithelial features start to emerge at the late 8-cell stage, but the fates of blastomeres are not fixed as TE or ICM until around 32-cell stage. The location of blastomeres at this stage, that is, external or internal of the embryo, in effect defines the commitment towards the TE or ICM lineage, respectively. Some studies implicate the presence of a developmental bias among blastomeres at 2- or 4-cell stage, although it is unlikely to play a decisive role in the establishment of TE and ICM. The unique mode of cell lineage specification in the mouse embryo is further discussed in comparison with the formation of initial cell lineages, namely the three germ layers, in non-mammalian embryos.

摘要

在小鼠胚胎发育过程中,第一个细胞谱系特化是囊胚的滋养外胚层(TE)和内细胞团(ICM)的形成。本文旨在综述和讨论这一特定事件的细胞和分子机制的最新知识。已经确定了几个转录因子作为这两个细胞谱系形成或维持的关键调节因子。TE 的建立表现为上皮的形成,并且依赖于许多在许多上皮组织中普遍存在并发挥作用的结构和调节成分。独特的上皮特征在晚期 8 细胞阶段开始出现,但直到大约 32 细胞阶段,胚胎细胞的命运才固定为 TE 或 ICM。在这个阶段,胚胎的外部或内部位置决定了胚胎细胞向 TE 或 ICM 谱系的特化,分别。尽管在 TE 和 ICM 的建立中不太可能起决定性作用,但一些研究表明,在 2 或 4 细胞阶段,胚胎细胞存在发育偏向。在与非哺乳动物胚胎中初始细胞谱系(即三个胚层)的形成进行比较时,进一步讨论了小鼠胚胎中独特的细胞谱系特化模式。

相似文献

1
Establishment of trophectoderm and inner cell mass lineages in the mouse embryo.
Mol Reprod Dev. 2009 Nov;76(11):1019-32. doi: 10.1002/mrd.21057.
2
Roles of ERα during mouse trophectoderm lineage differentiation: revealed by antagonist and agonist of ERα.
Dev Growth Differ. 2016 Apr;58(3):327-38. doi: 10.1111/dgd.12276. Epub 2016 Apr 1.
6
A novel method for purification of inner cell mass and trophectoderm cells from blastocysts using magnetic activated cell sorting.
Fertil Steril. 2011 Feb;95(2):799-802. doi: 10.1016/j.fertnstert.2010.10.006. Epub 2010 Nov 5.
7
Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst.
Reproduction. 2018 Jun;155(6):563-571. doi: 10.1530/REP-18-0043. Epub 2018 Apr 16.
10
Initiation of a conserved trophectoderm program in human, cow and mouse embryos.
Nature. 2020 Nov;587(7834):443-447. doi: 10.1038/s41586-020-2759-x. Epub 2020 Sep 23.

引用本文的文献

2
RNA-binding proteins as versatile metabolic regulators.
NPJ Metab Health Dis. 2025 Jan 13;3(1):1. doi: 10.1038/s44324-024-00044-z.
3
Advances in engineered models of peri-gastrulation.
iScience. 2025 May 14;28(6):112659. doi: 10.1016/j.isci.2025.112659. eCollection 2025 Jun 20.
4
The Temperature of the First Cleavage Impacts Preimplantation Development and Newborn Viability.
Int J Mol Sci. 2025 Apr 16;26(8):3745. doi: 10.3390/ijms26083745.
5
IGF-1 promotes trophectoderm cell proliferation of porcine embryos by activating the Wnt/β-catenin pathway.
Cell Commun Signal. 2025 Apr 20;23(1):188. doi: 10.1186/s12964-025-02191-2.
6
The gain and loss of plasticity during development and evolution.
Trends Cell Biol. 2025 Mar 3. doi: 10.1016/j.tcb.2025.01.008.
7
Signaling pathway regulators in preimplantation embryos.
J Mol Histol. 2024 Dec 27;56(1):57. doi: 10.1007/s10735-024-10338-7.
8
Loss of KANSL3 leads to defective inner cell mass and early embryonic lethality.
Mol Reprod Dev. 2024 May;91(5):e23760. doi: 10.1002/mrd.23760.
9
Endometrial and placental stem cells in successful and pathological pregnancies.
J Assist Reprod Genet. 2023 Jul;40(7):1509-1522. doi: 10.1007/s10815-023-02856-2. Epub 2023 Jun 20.
10
The RNA mA landscape of mouse oocytes and preimplantation embryos.
Nat Struct Mol Biol. 2023 May;30(5):703-709. doi: 10.1038/s41594-023-00969-x. Epub 2023 Apr 20.

本文引用的文献

3
Morphological organization of the mouse preimplantation embryo.
Reprod Sci. 2009 Feb;16(2):171-7. doi: 10.1177/1933719108331120.
4
Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse.
Development. 2009 Mar;136(5):701-13. doi: 10.1242/dev.017178.
5
Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo.
Nat Rev Mol Cell Biol. 2009 Feb;10(2):91-103. doi: 10.1038/nrm2618. Epub 2009 Jan 8.
6
Tight junction-based epithelial microenvironment and cell proliferation.
Oncogene. 2008 Nov 24;27(55):6930-8. doi: 10.1038/onc.2008.344.
8
Extreme makeover: converting one cell into another.
Cell Stem Cell. 2008 Oct 9;3(4):382-8. doi: 10.1016/j.stem.2008.09.015.
10
Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation.
Exp Cell Res. 2008 Nov 1;314(18):3356-68. doi: 10.1016/j.yexcr.2008.08.021. Epub 2008 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验