Suppr超能文献

减少个体间解剖变异:归一化方法对听觉皮层和颞上区功能磁共振成像数据分析敏感性的影响。

Reducing inter-subject anatomical variation: effect of normalization method on sensitivity of functional magnetic resonance imaging data analysis in auditory cortex and the superior temporal region.

作者信息

Tahmasebi Amir M, Abolmaesumi Purang, Zheng Zane Z, Munhall Kevin G, Johnsrude Ingrid S

机构信息

School of Computing, Queen's University, Kingston, ON, Canada.

出版信息

Neuroimage. 2009 Oct 1;47(4):1522-31. doi: 10.1016/j.neuroimage.2009.05.047. Epub 2009 May 27.

Abstract

Conventional group analysis of functional MRI (fMRI) data usually involves spatial alignment of anatomy across participants by registering every brain image to an anatomical reference image. Due to the high degree of inter-subject anatomical variability, a low-resolution average anatomical model is typically used as the target template, and/or smoothing kernels are applied to the fMRI data to increase the overlap among subjects' image data. However, such smoothing can make it difficult to resolve small regions such as subregions of auditory cortex when anatomical morphology varies among subjects. Here, we use data from an auditory fMRI study to show that using a high-dimensional registration technique (HAMMER) results in an enhanced functional signal-to-noise ratio (fSNR) for functional data analysis within auditory regions, with more localized activation patterns. The technique is validated against DARTEL, a high-dimensional diffeomorphic registration, as well as against commonly used low-dimensional normalization techniques such as the techniques provided with SPM2 (cosine basis functions) and SPM5 (unified segmentation) software packages. We also systematically examine how spatial resolution of the template image and spatial smoothing of the functional data affect the results. Only the high-dimensional technique (HAMMER) appears to be able to capitalize on the excellent anatomical resolution of a single-subject reference template, and, as expected, smoothing increased fSNR, but at the cost of spatial resolution. In general, results demonstrate significant improvement in fSNR using HAMMER compared to analysis after normalization using DARTEL, or conventional normalization such as cosine basis function and unified segmentation in SPM, with more precisely localized activation foci, at least for activation in the region of auditory cortex.

摘要

功能磁共振成像(fMRI)数据的传统组分析通常涉及通过将每个脑图像配准到解剖学参考图像来对参与者的解剖结构进行空间对齐。由于个体间解剖结构的高度变异性,通常使用低分辨率的平均解剖模型作为目标模板,和/或对fMRI数据应用平滑核以增加受试者图像数据之间的重叠。然而,当个体间解剖形态不同时,这种平滑可能难以分辨诸如听觉皮层子区域等小区域。在这里,我们使用一项听觉fMRI研究的数据表明,使用高维配准技术(HAMMER)可提高听觉区域内功能数据分析的功能信噪比(fSNR),并具有更局部化的激活模式。该技术针对DARTEL(一种高维微分同胚配准)以及常用的低维归一化技术(如SPM2软件包提供的技术(余弦基函数)和SPM5软件包提供的技术(统一分割))进行了验证。我们还系统地研究了模板图像的空间分辨率和功能数据的空间平滑如何影响结果。只有高维技术(HAMMER)似乎能够利用单受试者参考模板的出色解剖分辨率,并且正如预期的那样,平滑提高了fSNR,但代价是空间分辨率。总体而言,结果表明,与使用DARTEL进行归一化后的分析或SPM中的传统归一化(如余弦基函数和统一分割)相比,使用HAMMER在fSNR方面有显著提高,激活焦点定位更精确,至少对于听觉皮层区域的激活是如此。

相似文献

2
From spatial regularization to anatomical priors in fMRI analysis.
Inf Process Med Imaging. 2005;19:88-100. doi: 10.1007/11505730_8.
3
Spatial resolution of fMRI in the human parasylvian cortex: comparison of somatosensory and auditory activation.
Neuroimage. 2005 Apr 15;25(3):877-87. doi: 10.1016/j.neuroimage.2004.11.037.
4
A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe.
Neuroimage. 2009 Jan 15;44(2):319-27. doi: 10.1016/j.neuroimage.2008.09.016. Epub 2008 Sep 27.
5
Is the link between anatomical structure and function equally strong at all cognitive levels of processing?
Cereb Cortex. 2012 Jul;22(7):1593-603. doi: 10.1093/cercor/bhr205. Epub 2011 Sep 5.
6
Variable precision registration via wavelets: optimal spatial scales for inter-subject registration of functional MRI.
Neuroimage. 2006 May 15;31(1):197-208. doi: 10.1016/j.neuroimage.2005.11.032. Epub 2006 Jan 20.
7
Infant brain probability templates for MRI segmentation and normalization.
Neuroimage. 2008 Dec;43(4):721-30. doi: 10.1016/j.neuroimage.2008.07.060. Epub 2008 Aug 13.
9
Auditory tracts identified with combined fMRI and diffusion tractography.
Neuroimage. 2014 Jan 1;84:562-74. doi: 10.1016/j.neuroimage.2013.09.007. Epub 2013 Sep 16.
10
A validation framework for probabilistic maps using Heschl's gyrus as a model.
Neuroimage. 2010 Apr 1;50(2):532-44. doi: 10.1016/j.neuroimage.2009.12.074. Epub 2009 Dec 28.

引用本文的文献

3
The impact of T1 versus EPI spatial normalization templates for fMRI data analyses.
Hum Brain Mapp. 2017 Nov;38(11):5331-5342. doi: 10.1002/hbm.23737. Epub 2017 Jul 26.
5
Differential Neural Processing during Motor Imagery of Daily Activities in Chronic Low Back Pain Patients.
PLoS One. 2015 Nov 16;10(11):e0142391. doi: 10.1371/journal.pone.0142391. eCollection 2015.
6
Group-wise FMRI activation detection on DICCCOL landmarks.
Neuroinformatics. 2014 Oct;12(4):513-34. doi: 10.1007/s12021-014-9226-5.
7
The benefits of skull stripping in the normalization of clinical fMRI data.
Neuroimage Clin. 2013 Sep 30;3:369-80. doi: 10.1016/j.nicl.2013.09.007. eCollection 2013.
8
Survey of encoding and decoding of visual stimulus via FMRI: an image analysis perspective.
Brain Imaging Behav. 2014 Mar;8(1):7-23. doi: 10.1007/s11682-013-9238-z.
9
The multimodal connectivity of the hippocampal complex in auditory and visual hallucinations.
Mol Psychiatry. 2014 Feb;19(2):184-91. doi: 10.1038/mp.2012.181. Epub 2013 Jan 15.

本文引用的文献

1
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.
Neuroimage. 2009 Jul 1;46(3):786-802. doi: 10.1016/j.neuroimage.2008.12.037. Epub 2009 Jan 13.
2
A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe.
Neuroimage. 2009 Jan 15;44(2):319-27. doi: 10.1016/j.neuroimage.2008.09.016. Epub 2008 Sep 27.
3
Local landmark-based registration for fMRI group studies of nonprimary auditory cortex.
Neuroimage. 2009 Jan 1;44(1):145-53. doi: 10.1016/j.neuroimage.2008.07.051. Epub 2008 Aug 8.
4
Investigation of spatial resolution, partial volume effects and smoothing in functional MRI using artificial 3D time series.
Neuroimage. 2008 Jun;41(2):346-53. doi: 10.1016/j.neuroimage.2008.02.015. Epub 2008 Mar 10.
5
Pattern separation in the human hippocampal CA3 and dentate gyrus.
Science. 2008 Mar 21;319(5870):1640-2. doi: 10.1126/science.1152882.
6
Effects of spatial smoothing on fMRI group inferences.
Magn Reson Imaging. 2008 May;26(4):490-503. doi: 10.1016/j.mri.2007.08.006. Epub 2007 Dec 3.
7
A fast diffeomorphic image registration algorithm.
Neuroimage. 2007 Oct 15;38(1):95-113. doi: 10.1016/j.neuroimage.2007.07.007. Epub 2007 Jul 18.
8
Brain functional localization: a survey of image registration techniques.
IEEE Trans Med Imaging. 2007 Apr;26(4):427-51. doi: 10.1109/TMI.2007.892508.
9
High-resolution fMRI investigation of the medial temporal lobe.
Hum Brain Mapp. 2007 Oct;28(10):959-66. doi: 10.1002/hbm.20331.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验