Suppr超能文献

脑结构与动力学之间的共生关系。

Symbiotic relationship between brain structure and dynamics.

作者信息

Rubinov Mikail, Sporns Olaf, van Leeuwen Cees, Breakspear Michael

机构信息

Black Dog Institute and School of Psychiatry, University of New South Wales, Sydney, Australia.

出版信息

BMC Neurosci. 2009 Jun 2;10:55. doi: 10.1186/1471-2202-10-55.

Abstract

BACKGROUND

Brain structure and dynamics are interdependent through processes such as activity-dependent neuroplasticity. In this study, we aim to theoretically examine this interdependence in a model of spontaneous cortical activity. To this end, we simulate spontaneous brain dynamics on structural connectivity networks, using coupled nonlinear maps. On slow time scales structural connectivity is gradually adjusted towards the resulting functional patterns via an unsupervised, activity-dependent rewiring rule. The present model has been previously shown to generate cortical-like, modular small-world structural topology from initially random connectivity. We provide further biophysical justification for this model and quantitatively characterize the relationship between structure, function and dynamics that accompanies the ensuing self-organization.

RESULTS

We show that coupled chaotic dynamics generate ordered and modular functional patterns, even on a random underlying structural connectivity. Consequently, structural connectivity becomes more modular as it rewires towards these functional patterns. Functional networks reflect the underlying structural networks on slow time scales, but significantly less so on faster time scales. In spite of ordered functional topology, structural networks remain robustly interconnected--and therefore small-world--due to the presence of central, inter-modular hub nodes. The noisy dynamics of these hubs enable them to persist despite ongoing rewiring and despite their comparative absence in functional networks.

CONCLUSION

Our results outline a theoretical mechanism by which brain dynamics may facilitate neuroanatomical self-organization. We find time scale dependent differences between structural and functional networks. These differences are likely to arise from the distinct dynamics of central structural nodes.

摘要

背景

脑结构与动力学通过诸如活动依赖型神经可塑性等过程相互依存。在本研究中,我们旨在从理论上检验自发皮质活动模型中的这种相互依存关系。为此,我们使用耦合非线性映射在结构连接网络上模拟自发脑动力学。在慢时间尺度上,通过一种无监督的、活动依赖型的重新布线规则,结构连接逐渐朝着所产生的功能模式进行调整。先前的研究表明,当前模型能够从初始随机连接生成类似皮质的模块化小世界结构拓扑。我们为该模型提供了进一步的生物物理学依据,并定量描述了随之而来的自组织过程中结构、功能和动力学之间的关系。

结果

我们表明,即使在随机的基础结构连接上,耦合混沌动力学也能产生有序且模块化的功能模式。因此,当结构连接朝着这些功能模式重新布线时,它会变得更加模块化。功能网络在慢时间尺度上反映基础结构网络,但在较快时间尺度上反映程度明显较低。尽管功能拓扑有序,但由于存在中央的、模块间枢纽节点,结构网络仍保持强大的相互连接——因此是小世界网络。这些枢纽的噪声动力学使它们能够在持续重新布线的情况下以及在功能网络中相对缺乏的情况下持续存在。

结论

我们的结果概述了一种理论机制,通过该机制脑动力学可能促进神经解剖学自组织。我们发现结构和功能网络之间存在时间尺度依赖性差异。这些差异可能源于中央结构节点的不同动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfc/2700812/c23a2e92eb01/1471-2202-10-55-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验