Suppr超能文献

在酿酒酵母的全局转录重构过程中,染色质依赖的转录因子可及性而非核小体重塑占主导地位。

Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

Mol Biol Cell. 2009 Aug;20(15):3503-13. doi: 10.1091/mbc.e09-02-0111. Epub 2009 Jun 3.

Abstract

Several well-studied promoters in yeast lose nucleosomes upon transcriptional activation and gain them upon repression, an observation that has prompted the model that transcriptional activation and repression requires nucleosome remodeling of regulated promoters. We have examined global nucleosome positioning before and after glucose-induced transcriptional reprogramming, a condition under which more than half of all yeast genes significantly change expression. The majority of induced and repressed genes exhibit no change in promoter nucleosome arrangement, although promoters that do undergo nucleosome remodeling tend to contain a TATA box. Rather, we found multiple examples where the pre-existing accessibility of putative transcription factor binding sites before glucose addition determined whether the corresponding gene would change expression in response to glucose addition. These results suggest that selection of appropriate transcription factor binding sites may be dictated to a large extent by nucleosome prepositioning but that regulation of expression through these sites is dictated not by nucleosome repositioning but by changes in transcription factor activity.

摘要

酵母中一些研究充分的启动子在转录激活时失去核小体,在抑制时获得核小体,这一观察结果促使人们提出了转录激活和抑制需要调节启动子的核小体重塑的模型。我们在葡萄糖诱导的转录重编程前后检查了全局核小体定位,在这种情况下,超过一半的酵母基因的表达显著改变。大多数诱导和抑制的基因的启动子核小体排列没有变化,尽管确实经历核小体重塑的启动子往往含有 TATA 盒。相反,我们发现了多个例子,即在添加葡萄糖之前,假定转录因子结合位点的预先存在的可及性决定了相应基因是否会响应葡萄糖的添加而改变表达。这些结果表明,适当的转录因子结合位点的选择在很大程度上可能由核小体定位决定,但通过这些位点的表达调控不是由核小体重新定位决定,而是由转录因子活性的变化决定。

相似文献

2
Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.
PLoS One. 2011;6(9):e24279. doi: 10.1371/journal.pone.0024279. Epub 2011 Sep 9.
3
Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters.
Mol Biol Cell. 2011 Jun 15;22(12):2106-18. doi: 10.1091/mbc.E10-10-0826. Epub 2011 Apr 20.
4
Opening windows to the genome.
Cell. 2009 May 1;137(3):400-2. doi: 10.1016/j.cell.2009.04.026.
5
Nucleosome repositioning underlies dynamic gene expression.
Genes Dev. 2016 Mar 15;30(6):660-72. doi: 10.1101/gad.274910.115. Epub 2016 Mar 10.
6
The ATP-dependent chromatin remodeling enzyme Fun30 represses transcription by sliding promoter-proximal nucleosomes.
J Biol Chem. 2013 Aug 9;288(32):23182-93. doi: 10.1074/jbc.M113.471979. Epub 2013 Jun 18.
8
Mechanisms that specify promoter nucleosome location and identity.
Cell. 2009 May 1;137(3):445-58. doi: 10.1016/j.cell.2009.02.043.
10
In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae.
PLoS Genet. 2012;8(6):e1002771. doi: 10.1371/journal.pgen.1002771. Epub 2012 Jun 21.

引用本文的文献

2
Interplay among ATP-Dependent Chromatin Remodelers Determines Chromatin Organisation in Yeast.
Biology (Basel). 2020 Jul 25;9(8):190. doi: 10.3390/biology9080190.
3
Chromatin regulation and dynamics in stem cells.
Curr Top Dev Biol. 2020;138:1-71. doi: 10.1016/bs.ctdb.2019.11.002. Epub 2019 Dec 30.
4
Role of cell-type specific nucleosome positioning in inducible activation of mammalian promoters.
Nat Commun. 2020 Feb 26;11(1):1075. doi: 10.1038/s41467-020-14950-5.
6
Regulation of chaperone binding and nucleosome dynamics by key residues within the globular domain of histone H3.
Epigenetics Chromatin. 2016 Apr 30;9:17. doi: 10.1186/s13072-016-0066-4. eCollection 2016.
7
The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo.
Nucleic Acids Res. 2016 Jun 2;44(10):4625-35. doi: 10.1093/nar/gkw068. Epub 2016 Feb 9.
8
Nucleosome positioning in yeasts: methods, maps, and mechanisms.
Chromosoma. 2015 Jun;124(2):131-51. doi: 10.1007/s00412-014-0501-x. Epub 2014 Dec 23.
9
Heavy transcription of yeast genes correlates with differential loss of histone H2B relative to H4 and queued RNA polymerases.
Nucleic Acids Res. 2014 Nov 10;42(20):12512-22. doi: 10.1093/nar/gku1013. Epub 2014 Oct 27.

本文引用的文献

1
Using DNA mechanics to predict in vitro nucleosome positions and formation energies.
Nucleic Acids Res. 2009 Aug;37(14):4707-22. doi: 10.1093/nar/gkp475. Epub 2009 Jun 9.
2
Glucose regulates transcription in yeast through a network of signaling pathways.
Mol Syst Biol. 2009;5:245. doi: 10.1038/msb.2009.2. Epub 2009 Feb 17.
3
The DNA-encoded nucleosome organization of a eukaryotic genome.
Nature. 2009 Mar 19;458(7236):362-6. doi: 10.1038/nature07667. Epub 2008 Dec 17.
4
Distinct modes of regulation by chromatin encoded through nucleosome positioning signals.
PLoS Comput Biol. 2008 Nov;4(11):e1000216. doi: 10.1371/journal.pcbi.1000216. Epub 2008 Nov 7.
5
A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome.
Genome Res. 2008 Jul;18(7):1073-83. doi: 10.1101/gr.078261.108. Epub 2008 Jun 12.
6
The transcriptional landscape of the yeast genome defined by RNA sequencing.
Science. 2008 Jun 6;320(5881):1344-9. doi: 10.1126/science.1158441. Epub 2008 May 1.
8
A universal framework for regulatory element discovery across all genomes and data types.
Mol Cell. 2007 Oct 26;28(2):337-50. doi: 10.1016/j.molcel.2007.09.027.
9
A high-resolution atlas of nucleosome occupancy in yeast.
Nat Genet. 2007 Oct;39(10):1235-44. doi: 10.1038/ng2117. Epub 2007 Sep 16.
10
Transcription factor access to promoter elements.
J Cell Biochem. 2007 Oct 15;102(3):560-70. doi: 10.1002/jcb.21493.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验