Suppr超能文献

在酿酒酵母的全局转录重构过程中,染色质依赖的转录因子可及性而非核小体重塑占主导地位。

Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

Mol Biol Cell. 2009 Aug;20(15):3503-13. doi: 10.1091/mbc.e09-02-0111. Epub 2009 Jun 3.

Abstract

Several well-studied promoters in yeast lose nucleosomes upon transcriptional activation and gain them upon repression, an observation that has prompted the model that transcriptional activation and repression requires nucleosome remodeling of regulated promoters. We have examined global nucleosome positioning before and after glucose-induced transcriptional reprogramming, a condition under which more than half of all yeast genes significantly change expression. The majority of induced and repressed genes exhibit no change in promoter nucleosome arrangement, although promoters that do undergo nucleosome remodeling tend to contain a TATA box. Rather, we found multiple examples where the pre-existing accessibility of putative transcription factor binding sites before glucose addition determined whether the corresponding gene would change expression in response to glucose addition. These results suggest that selection of appropriate transcription factor binding sites may be dictated to a large extent by nucleosome prepositioning but that regulation of expression through these sites is dictated not by nucleosome repositioning but by changes in transcription factor activity.

摘要

酵母中一些研究充分的启动子在转录激活时失去核小体,在抑制时获得核小体,这一观察结果促使人们提出了转录激活和抑制需要调节启动子的核小体重塑的模型。我们在葡萄糖诱导的转录重编程前后检查了全局核小体定位,在这种情况下,超过一半的酵母基因的表达显著改变。大多数诱导和抑制的基因的启动子核小体排列没有变化,尽管确实经历核小体重塑的启动子往往含有 TATA 盒。相反,我们发现了多个例子,即在添加葡萄糖之前,假定转录因子结合位点的预先存在的可及性决定了相应基因是否会响应葡萄糖的添加而改变表达。这些结果表明,适当的转录因子结合位点的选择在很大程度上可能由核小体定位决定,但通过这些位点的表达调控不是由核小体重新定位决定,而是由转录因子活性的变化决定。

相似文献

4
Opening windows to the genome.打开基因组之窗。
Cell. 2009 May 1;137(3):400-2. doi: 10.1016/j.cell.2009.04.026.
5
Nucleosome repositioning underlies dynamic gene expression.核小体重新定位是动态基因表达的基础。
Genes Dev. 2016 Mar 15;30(6):660-72. doi: 10.1101/gad.274910.115. Epub 2016 Mar 10.

引用本文的文献

3
Chromatin regulation and dynamics in stem cells.染色质调控与干细胞动力学。
Curr Top Dev Biol. 2020;138:1-71. doi: 10.1016/bs.ctdb.2019.11.002. Epub 2019 Dec 30.
8
Nucleosome positioning in yeasts: methods, maps, and mechanisms.酵母中的核小体定位:方法、图谱及机制
Chromosoma. 2015 Jun;124(2):131-51. doi: 10.1007/s00412-014-0501-x. Epub 2014 Dec 23.

本文引用的文献

3
The DNA-encoded nucleosome organization of a eukaryotic genome.真核生物基因组的DNA编码核小体组织
Nature. 2009 Mar 19;458(7236):362-6. doi: 10.1038/nature07667. Epub 2008 Dec 17.
9
A high-resolution atlas of nucleosome occupancy in yeast.酵母核小体占据情况的高分辨率图谱。
Nat Genet. 2007 Oct;39(10):1235-44. doi: 10.1038/ng2117. Epub 2007 Sep 16.
10
Transcription factor access to promoter elements.转录因子与启动子元件的结合。
J Cell Biochem. 2007 Oct 15;102(3):560-70. doi: 10.1002/jcb.21493.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验