Suppr超能文献

电流控制的深部脑刺激减少了在电压控制刺激期间观察到的体内电压波动。

Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation.

机构信息

Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, USA.

出版信息

Clin Neurophysiol. 2010 Dec;121(12):2128-33. doi: 10.1016/j.clinph.2010.04.026. Epub 2010 May 20.

Abstract

OBJECTIVE

Clinical deep brain stimulation (DBS) systems typically utilize voltage-controlled stimulation and thus the voltage distribution generated in the brain can be affected by electrode impedance fluctuations. The goal of this study was to experimentally evaluate the theoretical advantages of using current-controlled pulse generators for DBS applications.

METHODS

Time-dependent changes in the voltage distribution generated in the brain during voltage-controlled and current-controlled DBS were monitored with in vivo experimental recordings performed in non-human primates implanted with scaled-down clinical DBS electrodes.

RESULTS

In the days following DBS lead implantation, electrode impedance progressively increased. Application of continuous stimulation through the DBS electrode produced a decrease in the electrode impedance in a time dependent manner, with the largest changes occurring within the first hour of stimulation. Over that time period, voltage-controlled stimuli exhibited an increase in the voltage magnitudes generated in the tissue near the DBS electrode, while current-controlled DBS showed minimal changes.

CONCLUSION

Large electrode impedance changes occur during DBS. During voltage-controlled stimulation, these impedance changes were significantly correlated with changes in the voltage distribution generated in the brain. However, these effects can be minimized with current-controlled stimulation.

SIGNIFICANCE

The use of current-controlled DBS may help minimize time-dependent changes in therapeutic efficacy that can complicate patient programming when using voltage-controlled DBS.

摘要

目的

临床深部脑刺激 (DBS) 系统通常采用电压控制刺激,因此电极阻抗波动会影响大脑中产生的电压分布。本研究旨在通过在植入缩小版临床 DBS 电极的非人类灵长类动物中进行体内实验记录,实验评估使用电流控制脉冲发生器用于 DBS 应用的理论优势。

方法

通过在植入缩小版临床 DBS 电极的非人类灵长类动物中进行体内实验记录,监测电压控制和电流控制 DBS 期间大脑中产生的电压分布的时变变化。

结果

在 DBS 导联植入后的几天内,电极阻抗逐渐增加。通过 DBS 电极施加连续刺激会导致电极阻抗随时间呈下降趋势,最大变化发生在刺激后的第一个小时内。在此期间,电压控制刺激导致 DBS 电极附近组织产生的电压幅度增加,而电流控制 DBS 则显示出最小的变化。

结论

在 DBS 期间会发生大的电极阻抗变化。在电压控制刺激期间,这些阻抗变化与大脑中产生的电压分布变化显著相关。然而,这些影响可以通过电流控制刺激来最小化。

意义

使用电流控制 DBS 可能有助于最小化因使用电压控制 DBS 而导致的治疗效果随时间变化的问题,这可能会使患者编程复杂化。

相似文献

1
Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation.
Clin Neurophysiol. 2010 Dec;121(12):2128-33. doi: 10.1016/j.clinph.2010.04.026. Epub 2010 May 20.
2
In vivo impedance spectroscopy of deep brain stimulation electrodes.
J Neural Eng. 2009 Aug;6(4):046001. doi: 10.1088/1741-2560/6/4/046001. Epub 2009 Jun 3.
3
Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.
Exp Neurol. 2009 Mar;216(1):166-76. doi: 10.1016/j.expneurol.2008.11.024. Epub 2008 Dec 11.
4
Sources and effects of electrode impedance during deep brain stimulation.
Clin Neurophysiol. 2006 Feb;117(2):447-54. doi: 10.1016/j.clinph.2005.10.007. Epub 2005 Dec 22.
5
The rationale driving the evolution of deep brain stimulation to constant-current devices.
Neuromodulation. 2015 Feb;18(2):85-8; discussion 88-9. doi: 10.1111/ner.12227. Epub 2014 Aug 29.
7
Nonlinear effects at the electrode-tissue interface of deep brain stimulation electrodes.
J Neural Eng. 2024 Feb 14;21(1). doi: 10.1088/1741-2552/ad2582.
8
Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
J Neural Eng. 2005 Dec;2(4):139-47. doi: 10.1088/1741-2560/2/4/010. Epub 2005 Nov 9.
9
Variation in deep brain stimulation electrode impedance over years following electrode implantation.
Stereotact Funct Neurosurg. 2014;92(2):94-102. doi: 10.1159/000358014. Epub 2014 Feb 6.
10
Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo.
J Neural Eng. 2009 Aug;6(4):046008. doi: 10.1088/1741-2560/6/4/046008. Epub 2009 Jul 9.

引用本文的文献

1
Chronic, Battery-Free, Fully Implantable Multimodal Spinal Cord Stimulator for Pain Modulation in Small Animal Models.
Adv Sci (Weinh). 2025 Jun;12(21):e2415963. doi: 10.1002/advs.202415963. Epub 2025 Apr 4.
2
Optimal control for stochastic neural oscillators.
Biol Cybern. 2025 Mar 20;119(2-3):9. doi: 10.1007/s00422-025-01007-3.
3
Frequency-dependent and capacitive tissue electrical properties in spinal cord stimulation models.
bioRxiv. 2024 Nov 25:2024.11.22.624883. doi: 10.1101/2024.11.22.624883.
4
The Safety to Switch from Constant Voltage to Constant Current with a Mixed Internal Pulse Generator in Deep Brain Stimulation.
Ann Indian Acad Neurol. 2023 Jul-Aug;26(4):507-512. doi: 10.4103/aian.aian_331_23. Epub 2023 Jul 14.
6
Electrophysiological insights into deep brain stimulation of the network disorder dystonia.
Pflugers Arch. 2023 Oct;475(10):1133-1147. doi: 10.1007/s00424-023-02845-5. Epub 2023 Aug 2.
7
Translational opportunities and challenges of invasive electrodes for neural interfaces.
Nat Biomed Eng. 2023 Apr;7(4):424-442. doi: 10.1038/s41551-023-01021-5. Epub 2023 Apr 20.
8
Constant current or constant voltage deep brain stimulation: short answers to a long story.
Acta Neurol Belg. 2023 Feb;123(1):1-8. doi: 10.1007/s13760-022-02118-5. Epub 2022 Oct 30.
9
An Inductively Powered Implantable System to Study the Gastrointestinal Electrophysiology in Freely Behaving Rodents.
Bioengineering (Basel). 2022 Oct 6;9(10):530. doi: 10.3390/bioengineering9100530.
10
Bioheat Model of Spinal Column Heating During High-Density Spinal Cord Stimulation.
Neuromodulation. 2023 Oct;26(7):1362-1370. doi: 10.1016/j.neurom.2022.07.006. Epub 2022 Aug 25.

本文引用的文献

1
Evolution of brain impedance in dystonic patients treated by GPI electrical stimulation.
Neuromodulation. 2004 Apr;7(2):67-75. doi: 10.1111/j.1094-7159.2004.04009.x.
2
In vivo impedance spectroscopy of deep brain stimulation electrodes.
J Neural Eng. 2009 Aug;6(4):046001. doi: 10.1088/1741-2560/6/4/046001. Epub 2009 Jun 3.
4
Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.
Exp Neurol. 2009 Mar;216(1):166-76. doi: 10.1016/j.expneurol.2008.11.024. Epub 2008 Dec 11.
5
The STN beta-band profile in Parkinson's disease is stationary and shows prolonged attenuation after deep brain stimulation.
Exp Neurol. 2009 Jan;215(1):20-8. doi: 10.1016/j.expneurol.2008.09.008. Epub 2008 Sep 27.
7
Foreign body reaction to biomaterials.
Semin Immunol. 2008 Apr;20(2):86-100. doi: 10.1016/j.smim.2007.11.004. Epub 2007 Dec 26.
8
Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants.
J Neural Eng. 2007 Dec;4(4):410-23. doi: 10.1088/1741-2560/4/4/007. Epub 2007 Nov 27.
9
Stereotactic neurosurgical planning, recording, and visualization for deep brain stimulation in non-human primates.
J Neurosci Methods. 2007 May 15;162(1-2):32-41. doi: 10.1016/j.jneumeth.2006.12.007. Epub 2006 Dec 21.
10
Deep brain stimulation: postoperative issues.
Mov Disord. 2006 Jun;21 Suppl 14:S219-37. doi: 10.1002/mds.20957.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验