Suppr超能文献

基于尖峰的脑机接口算法的偏差、最优线性估计以及开环模拟与闭环性能之间的差异。

Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms.

机构信息

Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15203, USA.

出版信息

Neural Netw. 2009 Nov;22(9):1203-13. doi: 10.1016/j.neunet.2009.05.005. Epub 2009 May 22.

Abstract

The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where the activity of each cell is used to weight a vector pointing in that neuron's preferred direction. Off-line, it is possible to show that more complicated algorithms, such as the optimal linear estimator (OLE), can yield substantial improvements in the accuracy of reconstructed hand movements over the PVA. We call this open-loop performance. In contrast, this performance difference may not be present in closed-loop, on-line control. The obvious difference between open and closed-loop control is the ability to adapt to the specifics of the decoder in use at the time. In order to predict performance gains that an algorithm may yield in closed-loop control, it is necessary to build a model that captures aspects of this adaptation process. Here we present a framework for modeling the closed-loop performance of the PVA and the OLE. Using both simulations and experiments, we show that (1) the performance gain with certain decoders can be far less extreme than predicted by off-line results, (2) that subjects are able to compensate for certain types of bias in decoders, and (3) that care must be taken to ensure that estimation error does not degrade the performance of theoretically optimal decoders.

摘要

数十个同时记录的神经元的活动可以用于控制机械臂或计算机屏幕上的光标运动。这种运动神经假肢技术激发了人们对运动意图推断算法的浓厚兴趣。这些算法中最简单的是群体矢量算法(PVA),其中每个细胞的活动用于加权指向该神经元首选方向的矢量。离线时,可以证明更复杂的算法,如最优线性估计器(OLE),可以在重建手部运动的准确性方面相对于 PVA 产生实质性的改进。我们称之为开环性能。相比之下,这种性能差异在闭环、在线控制中可能不存在。开环和闭环控制的明显区别在于能够适应当时使用的解码器的具体情况。为了预测算法在闭环控制中可能产生的性能增益,有必要构建一个能够捕捉这种适应过程的模型。在这里,我们提出了一个用于建模 PVA 和 OLE 闭环性能的框架。通过仿真和实验,我们表明:(1)某些解码器的性能增益可能远小于离线结果预测的那样极端;(2) 受试者能够补偿解码器中的某些类型的偏差;(3) 必须注意确保估计误差不会降低理论上最佳解码器的性能。

相似文献

引用本文的文献

3
A posture subspace in primary motor cortex.初级运动皮层中的姿势子空间。
bioRxiv. 2024 Aug 12:2024.08.12.607361. doi: 10.1101/2024.08.12.607361.
6
Neural Plasticity in Sensorimotor Brain-Machine Interfaces.感觉运动脑机接口中的神经可塑性。
Annu Rev Biomed Eng. 2023 Jun 8;25:51-76. doi: 10.1146/annurev-bioeng-110220-110833. Epub 2023 Feb 28.
8
The science and engineering behind sensitized brain-controlled bionic hands.敏化脑控仿生手的科学与工程。
Physiol Rev. 2022 Apr 1;102(2):551-604. doi: 10.1152/physrev.00034.2020. Epub 2021 Sep 20.

本文引用的文献

1
Decoding trajectories from posterior parietal cortex ensembles.解码后顶叶皮质神经元集群的轨迹。
J Neurosci. 2008 Nov 26;28(48):12913-26. doi: 10.1523/JNEUROSCI.1463-08.2008.
3
Cortical control of a prosthetic arm for self-feeding.用于自主进食的假肢手臂的皮质控制。
Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28.
5
Motor learning with unstable neural representations.基于不稳定神经表征的运动学习。
Neuron. 2007 May 24;54(4):653-66. doi: 10.1016/j.neuron.2007.04.030.
7
A high-performance brain-computer interface.一种高性能脑机接口。
Nature. 2006 Jul 13;442(7099):195-8. doi: 10.1038/nature04968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验