Suppr超能文献

γ 频率振荡的第二个功能:一种 E%-最大值胜者全得机制选择哪些细胞放电。

A second function of gamma frequency oscillations: an E%-max winner-take-all mechanism selects which cells fire.

作者信息

de Almeida Licurgo, Idiart Marco, Lisman John E

机构信息

Neuroscience Program and Physics Institute, Universidade Federal do Rio Grande do Sul, CEP 90040-060 Porto Alegre, Brazil.

出版信息

J Neurosci. 2009 Jun 10;29(23):7497-503. doi: 10.1523/JNEUROSCI.6044-08.2009.

Abstract

The role of gamma oscillations in producing synchronized firing of groups of principal cells is well known. Here, we argue that gamma oscillations have a second function: they select which principal cells fire. This selection process occurs through the interaction of excitation with gamma frequency feedback inhibition. We sought to understand the rules that govern this process. One possibility is that a constant fraction of cells fire. Our analysis shows, however, that the fraction is not robust because it depends on the distribution of excitation to different cells. A robust description is termed E%-max: cells fire if they have suprathreshold excitation (E) within E% of the cell that has maximum excitation. The value of E%-max is approximated by the ratio of the delay of feedback inhibition to the membrane time constant. From measured values, we estimate that E%-max is 5-15%. Thus, an E%-max winner-take-all process can discriminate between groups of cells that have only small differences in excitation. To test the utility of this framework, we analyzed the role of oscillations in V1, one of the few systems in which both spiking and intracellular excitation have been directly measured. We show that an E%-max winner-take-all process provides a simple explanation for why the orientation tuning of firing is narrower than that of the excitatory input and why this difference is not affected by increasing excitation. Because gamma oscillations occur in many brain regions, the framework we have developed for understanding the second function of gamma is likely to have wide applicability.

摘要

γ振荡在产生主细胞群同步放电方面的作用已广为人知。在此,我们认为γ振荡还有第二个功能:它们选择哪些主细胞放电。这种选择过程通过兴奋与γ频率反馈抑制的相互作用而发生。我们试图了解支配这一过程的规则。一种可能性是固定比例的细胞放电。然而,我们的分析表明,这个比例并不稳定,因为它取决于兴奋在不同细胞间的分布。一种稳健的描述被称为E%-最大值:如果细胞的兴奋度(E)在具有最大兴奋度的细胞的E%范围内且高于阈值,那么这些细胞就会放电。E%-最大值的值可通过反馈抑制延迟与膜时间常数的比值来近似估算。根据测量值,我们估计E%-最大值为5%-15%。因此,一个E%-最大值的胜者全得过程能够区分兴奋度仅有微小差异的细胞群。为了测试这个框架的实用性,我们分析了振荡在V1中的作用,V1是少数几个同时直接测量了放电和细胞内兴奋的系统之一。我们表明,一个E%-最大值的胜者全得过程为放电的方向调谐为何比兴奋性输入的方向调谐更窄以及为何这种差异不受兴奋度增加的影响提供了一个简单的解释。由于γ振荡发生在许多脑区,我们为理解γ的第二个功能而开发的框架可能具有广泛的适用性。

相似文献

7
The gamma cycle.γ 循环
Trends Neurosci. 2007 Jul;30(7):309-16. doi: 10.1016/j.tins.2007.05.005. Epub 2007 Jun 6.

引用本文的文献

6
Do Place Cells Dream of Deceptive Moves in a Signaling Game?位置细胞是否会在信号博弈中幻想出欺骗性的动作?
Neuroscience. 2023 Oct 1;529:129-147. doi: 10.1016/j.neuroscience.2023.08.012. Epub 2023 Aug 15.

本文引用的文献

3
The gamma cycle.γ 循环
Trends Neurosci. 2007 Jul;30(7):309-16. doi: 10.1016/j.tins.2007.05.005. Epub 2007 Jun 6.
4
Role of GABAergic inhibition in hippocampal network oscillations.γ-氨基丁酸能抑制在海马网络振荡中的作用。
Trends Neurosci. 2007 Jul;30(7):343-9. doi: 10.1016/j.tins.2007.05.003. Epub 2007 May 25.
5
Human gamma-frequency oscillations associated with attention and memory.与注意力和记忆相关的人类γ频率振荡。
Trends Neurosci. 2007 Jul;30(7):317-24. doi: 10.1016/j.tins.2007.05.001. Epub 2007 May 17.
9
Comparison among some models of orientation selectivity.一些方向选择性模型之间的比较。
J Neurophysiol. 2006 Jul;96(1):404-19. doi: 10.1152/jn.00015.2005. Epub 2006 Apr 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验