Suppr超能文献

前馈抑制对伽马频率振荡的调节:一项计算建模研究。

Regulation of gamma-frequency oscillation by feedforward inhibition: A computational modeling study.

机构信息

Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.

Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.

出版信息

Hippocampus. 2019 Oct;29(10):957-970. doi: 10.1002/hipo.23093. Epub 2019 Apr 16.

Abstract

Throughout the brain, reciprocally connected excitatory and inhibitory neurons interact to produce gamma-frequency oscillations. The emergent gamma rhythm synchronizes local neural activity and helps to select which cells should fire in each cycle. We previously found that such excitation-inhibition microcircuits, however, have a potentially significant caveat: the frequency of the gamma oscillation and the level of selection (i.e., the percentage of cells that are allowed to fire) vary with the magnitude of the input signal. In networks with varying levels of brain activity, such a feature may produce undesirable instability on the time and spatial structure of the neural signal with a potential for adversely impacting important neural processing mechanisms. Here we propose that feedforward inhibition solves the latter instability problem of the excitation-inhibition microcircuit. Using computer simulations, we show that the feedforward inhibitory signal reduces the dependence of both the frequency of population oscillation and the level of selection on the magnitude of the input excitation. Such a mechanism can produce stable gamma oscillations with its frequency determined only by the properties of the feedforward network, as observed in the hippocampus. As feedforward and feedback inhibition motifs commonly appear together in the brain, we hypothesize that their interaction underlies a robust implementation of general computational principles of neural processing involved in several cognitive tasks, including the formation of cell assemblies and the routing of information between brain areas.

摘要

在整个大脑中,相互连接的兴奋性和抑制性神经元相互作用,产生伽马频率的振荡。出现的伽马节律使局部神经活动同步,并有助于选择每个周期中应该发射的细胞。我们之前发现,这种兴奋-抑制微电路有一个潜在的显著问题:伽马振荡的频率和选择水平(即允许发射的细胞的百分比)随输入信号的幅度而变化。在具有不同大脑活动水平的网络中,这种特性可能会对神经信号的时间和空间结构产生不理想的不稳定性,从而对重要的神经处理机制产生潜在的不利影响。在这里,我们提出前馈抑制可以解决兴奋-抑制微电路的后者不稳定性问题。我们使用计算机模拟表明,前馈抑制信号减少了群体振荡频率和选择水平对输入兴奋幅度的依赖性。这种机制可以产生稳定的伽马振荡,其频率仅由前馈网络的特性决定,正如在海马体中观察到的那样。由于前馈和反馈抑制模式通常一起出现在大脑中,我们假设它们的相互作用是几个认知任务中涉及的神经处理的一般计算原则的稳健实现的基础,包括细胞集合的形成和大脑区域之间的信息路由。

相似文献

6
Feedforward architectures driven by inhibitory interactions.由抑制性相互作用驱动的前馈架构。
J Comput Neurosci. 2018 Feb;44(1):63-74. doi: 10.1007/s10827-017-0669-1. Epub 2017 Nov 14.

引用本文的文献

本文引用的文献

7
Mechanisms underlying a thalamocortical transformation during active tactile sensation.主动触觉感知过程中丘脑皮质转换的潜在机制。
PLoS Comput Biol. 2017 Jun 7;13(6):e1005576. doi: 10.1371/journal.pcbi.1005576. eCollection 2017 Jun.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验