Suppr超能文献

前馈抑制对伽马频率振荡的调节:一项计算建模研究。

Regulation of gamma-frequency oscillation by feedforward inhibition: A computational modeling study.

机构信息

Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.

Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.

出版信息

Hippocampus. 2019 Oct;29(10):957-970. doi: 10.1002/hipo.23093. Epub 2019 Apr 16.

Abstract

Throughout the brain, reciprocally connected excitatory and inhibitory neurons interact to produce gamma-frequency oscillations. The emergent gamma rhythm synchronizes local neural activity and helps to select which cells should fire in each cycle. We previously found that such excitation-inhibition microcircuits, however, have a potentially significant caveat: the frequency of the gamma oscillation and the level of selection (i.e., the percentage of cells that are allowed to fire) vary with the magnitude of the input signal. In networks with varying levels of brain activity, such a feature may produce undesirable instability on the time and spatial structure of the neural signal with a potential for adversely impacting important neural processing mechanisms. Here we propose that feedforward inhibition solves the latter instability problem of the excitation-inhibition microcircuit. Using computer simulations, we show that the feedforward inhibitory signal reduces the dependence of both the frequency of population oscillation and the level of selection on the magnitude of the input excitation. Such a mechanism can produce stable gamma oscillations with its frequency determined only by the properties of the feedforward network, as observed in the hippocampus. As feedforward and feedback inhibition motifs commonly appear together in the brain, we hypothesize that their interaction underlies a robust implementation of general computational principles of neural processing involved in several cognitive tasks, including the formation of cell assemblies and the routing of information between brain areas.

摘要

在整个大脑中,相互连接的兴奋性和抑制性神经元相互作用,产生伽马频率的振荡。出现的伽马节律使局部神经活动同步,并有助于选择每个周期中应该发射的细胞。我们之前发现,这种兴奋-抑制微电路有一个潜在的显著问题:伽马振荡的频率和选择水平(即允许发射的细胞的百分比)随输入信号的幅度而变化。在具有不同大脑活动水平的网络中,这种特性可能会对神经信号的时间和空间结构产生不理想的不稳定性,从而对重要的神经处理机制产生潜在的不利影响。在这里,我们提出前馈抑制可以解决兴奋-抑制微电路的后者不稳定性问题。我们使用计算机模拟表明,前馈抑制信号减少了群体振荡频率和选择水平对输入兴奋幅度的依赖性。这种机制可以产生稳定的伽马振荡,其频率仅由前馈网络的特性决定,正如在海马体中观察到的那样。由于前馈和反馈抑制模式通常一起出现在大脑中,我们假设它们的相互作用是几个认知任务中涉及的神经处理的一般计算原则的稳健实现的基础,包括细胞集合的形成和大脑区域之间的信息路由。

相似文献

1
Regulation of gamma-frequency oscillation by feedforward inhibition: A computational modeling study.
Hippocampus. 2019 Oct;29(10):957-970. doi: 10.1002/hipo.23093. Epub 2019 Apr 16.
2
A mean-field model of gamma-frequency oscillations in networks of excitatory and inhibitory neurons.
J Comput Neurosci. 2024 May;52(2):165-181. doi: 10.1007/s10827-024-00867-1. Epub 2024 Mar 21.
3
Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit.
J Neurophysiol. 2016 Aug 1;116(2):522-39. doi: 10.1152/jn.00988.2015. Epub 2016 Apr 27.
4
Gamma Oscillations Facilitate Effective Learning in Excitatory-Inhibitory Balanced Neural Circuits.
Neural Plast. 2021 Jan 19;2021:6668175. doi: 10.1155/2021/6668175. eCollection 2021.
5
Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
J Neurophysiol. 2005 Dec;94(6):4344-61. doi: 10.1152/jn.00510.2004. Epub 2005 Aug 10.
6
Feedforward architectures driven by inhibitory interactions.
J Comput Neurosci. 2018 Feb;44(1):63-74. doi: 10.1007/s10827-017-0669-1. Epub 2017 Nov 14.
7
Feedback Inhibition Shapes Emergent Computational Properties of Cortical Microcircuit Motifs.
J Neurosci. 2017 Aug 30;37(35):8511-8523. doi: 10.1523/JNEUROSCI.2078-16.2017. Epub 2017 Jul 31.
8
Snapshots of the Brain in Action: Local Circuit Operations through the Lens of γ Oscillations.
J Neurosci. 2016 Oct 12;36(41):10496-10504. doi: 10.1523/JNEUROSCI.1021-16.2016.
9
Macroscopic phase resetting-curves determine oscillatory coherence and signal transfer in inter-coupled neural circuits.
PLoS Comput Biol. 2019 May 9;15(5):e1007019. doi: 10.1371/journal.pcbi.1007019. eCollection 2019 May.

引用本文的文献

1
Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice.
Nat Commun. 2024 Jan 24;15(1):714. doi: 10.1038/s41467-024-44882-3.
2
Hippocampal interneuronal dysfunction and hyperexcitability in a porcine model of concussion.
Commun Biol. 2023 Nov 9;6(1):1136. doi: 10.1038/s42003-023-05491-w.
3
Simulations predict differing phase responses to excitation vs. inhibition in theta-resonant pyramidal neurons.
J Neurophysiol. 2023 Oct 1;130(4):910-924. doi: 10.1152/jn.00160.2023. Epub 2023 Aug 23.
4
Offline memory replay in recurrent neuronal networks emerges from constraints on online dynamics.
J Physiol. 2023 Aug;601(15):3241-3264. doi: 10.1113/JP283216. Epub 2022 Aug 12.
5
Recurrent Excitatory Feedback From Mossy Cells Enhances Sparsity and Pattern Separation in the Dentate Gyrus Indirect Feedback Inhibition.
Front Comput Neurosci. 2022 Feb 10;16:826278. doi: 10.3389/fncom.2022.826278. eCollection 2022.
6
Regulating synchronous oscillations of cerebellar granule cells by different types of inhibition.
PLoS Comput Biol. 2021 Jun 28;17(6):e1009163. doi: 10.1371/journal.pcbi.1009163. eCollection 2021 Jun.

本文引用的文献

2
Parsing Hippocampal Theta Oscillations by Nested Spectral Components during Spatial Exploration and Memory-Guided Behavior.
Neuron. 2018 Nov 21;100(4):940-952.e7. doi: 10.1016/j.neuron.2018.09.031. Epub 2018 Oct 18.
3
CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus.
Nat Neurosci. 2018 Apr;21(4):484-493. doi: 10.1038/s41593-018-0118-0. Epub 2018 Mar 28.
4
Integrating new findings and examining clinical applications of pattern separation.
Nat Neurosci. 2018 Feb;21(2):163-173. doi: 10.1038/s41593-017-0065-1. Epub 2018 Jan 25.
5
Comparison of three gamma oscillations in the mouse entorhinal-hippocampal system.
Eur J Neurosci. 2018 Oct;48(8):2795-2806. doi: 10.1111/ejn.13831. Epub 2018 Feb 9.
6
Place and Grid Cells in a Loop: Implications for Memory Function and Spatial Coding.
J Neurosci. 2017 Aug 23;37(34):8062-8076. doi: 10.1523/JNEUROSCI.3490-16.2017. Epub 2017 Jul 12.
7
Mechanisms underlying a thalamocortical transformation during active tactile sensation.
PLoS Comput Biol. 2017 Jun 7;13(6):e1005576. doi: 10.1371/journal.pcbi.1005576. eCollection 2017 Jun.
8
Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats.
Front Neural Circuits. 2017 May 9;11:29. doi: 10.3389/fncir.2017.00029. eCollection 2017.
9
Phase-amplitude coupled persistent theta and gamma oscillations in rat primary motor cortex in vitro.
Neuropharmacology. 2017 Jun;119:141-156. doi: 10.1016/j.neuropharm.2017.04.009. Epub 2017 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验