Kacem N, Hentz S, Pinto D, Reig B, Nguyen V
CEA/LETI-MINATEC, Grenoble, France.
Nanotechnology. 2009 Jul 8;20(27):275501. doi: 10.1088/0957-4484/20/27/275501. Epub 2009 Jun 16.
In order to compensate for the loss of performance when scaling resonant sensors down to NEMS, it proves extremely useful to study the behavior of resonators up to very high displacements and hence high nonlinearities. This work describes a comprehensive nonlinear multiphysics model based on the Euler-Bernoulli equation which includes both mechanical and electrostatic nonlinearities valid up to displacements comparable to the gap in the case of an electrostatically actuated doubly clamped beam. Moreover, the model takes into account the fringing field effects, significant for thin resonators. The model has been compared to both numerical integrations and electrical measurements of devices fabricated on 200 mm SOI wafers; it shows very good agreement with both. An important contribution of this work is the provision for closed-form expressions of the critical amplitude and the pull-in domain initiation amplitude including all nonlinearities. This model allows designers to cancel out nonlinearities by tuning some design parameters and thus gives the possibility to drive the resonator beyond its critical amplitude. Consequently, the sensor performance can be enhanced to the maximum below the pull-in instability, while keeping a linear behavior.
为了补偿将谐振传感器缩小到纳米机电系统(NEMS)时性能的损失,研究谐振器在非常大的位移以及由此产生的高非线性情况下的行为被证明是极其有用的。这项工作描述了一个基于欧拉 - 伯努利方程的综合非线性多物理场模型,该模型包括机械和静电非线性,在静电驱动的双端固支梁的情况下,其有效位移可与间隙相当。此外,该模型考虑了边缘场效应,这对薄谐振器来说很重要。该模型已与在200毫米绝缘体上硅(SOI)晶圆上制造的器件的数值积分和电学测量结果进行了比较;结果表明它与两者都非常吻合。这项工作的一个重要贡献是提供了包括所有非线性的临界振幅和拉入域起始振幅的闭式表达式。该模型允许设计者通过调整一些设计参数来消除非线性,从而有可能驱动谐振器超过其临界振幅。因此,在拉入不稳定性之前,传感器性能可以提高到最大值,同时保持线性行为。