Jarlier V, Gutmann L, Nikaido H
Laboratoire de Bactériologie-Virologie, Faculté de Médecine Pitié-Salpêtrière, Paris, France.
Antimicrob Agents Chemother. 1991 Sep;35(9):1937-9. doi: 10.1128/AAC.35.9.1937.
We calculated the target access index, which reflects the probability that a drug will reach its target at an effective concentration, and the predictive MICs of cephaloridine, cephalothin, and cefazolin for Mycobacterium chelonae from the drug concentrations inhibiting the binding of benzylpenicillin to penicillin-binding proteins, the permeability coefficients, and the beta-lactamase properties. Despite a low level of beta-lactamase activity and because of a very effective permeability barrier, the target access indices were very low, e.g., 100 times lower than for penicillinase-producing Escherichia coli. The predicted MICs were within one to three twofold dilutions of the experimentally determined values (which ranged between 512 and greater than or equal to 2,048 micrograms/ml). These results demonstrate that the interplay of the cell wall barrier and beta-lactamase activity determines high resistance of M. chelonae to beta-lactam antibiotics.
我们计算了靶标可达指数,该指数反映了药物以有效浓度到达其靶标的概率,并根据抑制苄青霉素与青霉素结合蛋白结合的药物浓度、通透系数和β-内酰胺酶特性,预测了头孢菌素、头孢噻吩和头孢唑林对龟分枝杆菌的最低抑菌浓度(MIC)。尽管β-内酰胺酶活性水平较低,但由于存在非常有效的通透屏障,靶标可达指数非常低,例如,比产青霉素酶的大肠杆菌低100倍。预测的MIC值在实验测定值的1至3个两倍稀释度范围内(实验测定值在512至大于或等于2048微克/毫升之间)。这些结果表明,细胞壁屏障和β-内酰胺酶活性的相互作用决定了龟分枝杆菌对β-内酰胺类抗生素的高度耐药性。