Yao Chun-Wei, Lian Ian
Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA.
Department of Biology, Lamar University, Beaumont, TX 77710, USA.
Nanomaterials (Basel). 2025 Aug 19;15(16):1280. doi: 10.3390/nano15161280.
This study investigates the mechanical and tribological behavior of a polydimethylsiloxane (PDMS)-silica nanocomposite coating over the temperature range extending from 24 °C to 120 °C. Nanoindentation tests revealed depth- and temperature-dependent variations in hardness and complex modulus. A time-dependent deformation model accurately captured the viscoelastic and viscoplastic behavior observed during sustained loading, providing predictive insight into the coating's thermomechanical performance. Tribological evaluation through friction and nanoscratch testing demonstrated a temperature-induced increase in the coefficient of friction. The integration of mechanical and surface metrology and characterization techniques offers a comprehensive understanding of the coating's behavior under thermal and mechanical stress. These findings support the design of robust nanocomposite coatings with superior functional performance for practical applications requiring enhanced mechanical stability, wear resistance, and thermal tolerance in challenging service environments.
本研究调查了聚二甲基硅氧烷(PDMS)-二氧化硅纳米复合涂层在24°C至120°C温度范围内的力学和摩擦学行为。纳米压痕测试揭示了硬度和复数模量随深度和温度的变化。一个与时间相关的变形模型准确地捕捉了持续加载过程中观察到的粘弹性和粘塑性行为,为涂层的热机械性能提供了预测性见解。通过摩擦和纳米划痕测试进行的摩擦学评估表明,摩擦系数随温度升高。机械和表面计量与表征技术的结合提供了对涂层在热和机械应力下行为的全面理解。这些发现为设计具有卓越功能性能的坚固纳米复合涂层提供了支持,适用于在具有挑战性的服役环境中需要增强机械稳定性、耐磨性和耐热性的实际应用。