Suppr超能文献

未折叠蛋白质中的顺磁弛豫增强:理论及在drkN SH3结构域中的应用

Paramagnetic relaxation enhancements in unfolded proteins: theory and application to drkN SH3 domain.

作者信息

Xue Yi, Podkorytov Ivan S, Rao D Krishna, Benjamin Nathan, Sun Honglei, Skrynnikov Nikolai R

机构信息

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

Protein Sci. 2009 Jul;18(7):1401-24. doi: 10.1002/pro.153.

Abstract

Site-directed spin labeling in combination with paramagnetic relaxation enhancement (PRE) measurements is one of the most promising techniques for studying unfolded proteins. Since the pioneering work of Gillespie and Shortle (J Mol Biol 1997;268:158), PRE data from unfolded proteins have been interpreted using the theory that was originally developed for rotational spin relaxation. At the same time, it can be readily recognized that the relative motion of the paramagnetic tag attached to the peptide chain and the reporter spin such as (1)H(N) is best described as a translation. With this notion in mind, we developed a number of models for the PRE effect in unfolded proteins: (i) mutual diffusion of the two tethered spheres, (ii) mutual diffusion of the two tethered spheres subject to a harmonic potential, (iii) mutual diffusion of the two tethered spheres subject to a simulated mean-force potential (Smoluchowski equation); (iv) explicit-atom molecular dynamics simulation. The new models were used to predict the dependences of the PRE rates on the (1)H(N) residue number and static magnetic field strength; the results are appreciably different from the Gillespie-Shortle model. At the same time, the Gillespie-Shortle approach is expected to be generally adequate if the goal is to reconstruct the distance distributions between (1)H(N) spins and the paramagnetic center (provided that the characteristic correlation time is known with a reasonable accuracy). The theory has been tested by measuring the PRE rates in three spin-labeled mutants of the drkN SH3 domain in 2M guanidinium chloride. Two modifications introduced into the measurement scheme-using a reference compound to calibrate the signals from the two samples (oxidized and reduced) and using peak volumes instead of intensities to determine the PRE rates-lead to a substantial improvement in the quality of data. The PRE data from the denatured drkN SH3 are mostly consistent with the model of moderately expanded random-coil protein, although part of the data point toward a more compact structure (local hydrophobic cluster). At the same time, the radius of gyration reported by Choy et al. (J Mol Biol 2002;316:101) suggests that the protein is highly expanded. This seemingly contradictory evidence can be reconciled if one assumes that denatured drkN SH3 forms a conformational ensemble that is dominated by extended conformations, yet also contains compact (collapsed) species. Such behavior is apparently more complex than predicted by the model of a random-coil protein in good solvent/poor solvent.

摘要

定点自旋标记结合顺磁弛豫增强(PRE)测量是研究未折叠蛋白质最有前景的技术之一。自吉莱斯皮和肖特尔的开创性工作(《分子生物学杂志》1997年;268:158)以来,未折叠蛋白质的PRE数据一直使用最初为旋转自旋弛豫开发的理论进行解释。与此同时,可以很容易地认识到,连接在肽链上的顺磁标记与报告自旋(如(1)H(N))的相对运动最好描述为平移。基于这一概念,我们为未折叠蛋白质中的PRE效应开发了一些模型:(i)两个拴系球体的相互扩散;(ii)受谐势作用的两个拴系球体的相互扩散;(iii)受模拟平均力势作用的两个拴系球体的相互扩散(斯莫卢霍夫斯基方程);(iv)显式原子分子动力学模拟。新模型用于预测PRE速率对(1)H(N)残基编号和静磁场强度的依赖性;结果与吉莱斯皮 - 肖特尔模型明显不同。与此同时,如果目标是重建(1)H(N)自旋与顺磁中心之间的距离分布(前提是特征相关时间已知且精度合理),吉莱斯皮 - 肖特尔方法预计总体上是适用的。该理论已通过测量2M氯化铵中drkN SH3结构域的三个自旋标记突变体的PRE速率进行了测试。测量方案中引入的两个改进——使用参考化合物校准两个样品(氧化态和还原态)的信号以及使用峰体积而非强度来确定PRE速率——导致数据质量有了显著提高。变性drkN SH3的PRE数据大多与适度扩展的无规卷曲蛋白质模型一致,尽管部分数据指向更紧凑的结构(局部疏水簇)。与此同时,乔伊等人(《分子生物学杂志》2002年;316:101)报道的回转半径表明该蛋白质高度扩展。如果假设变性的drkN SH3形成一个构象集合,其中以伸展构象为主,但也包含紧凑(折叠)物种,那么这一看似矛盾的证据就可以得到调和。这种行为显然比在良溶剂/不良溶剂中无规卷曲蛋白质模型所预测的更为复杂。

相似文献

引用本文的文献

本文引用的文献

9
The role of hydrophobic interactions in initiation and propagation of protein folding.疏水相互作用在蛋白质折叠起始和传播中的作用。
Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13057-61. doi: 10.1073/pnas.0605504103. Epub 2006 Aug 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验