Biotechnology and Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
Environ Geochem Health. 2010 Jun;32(3):165-77. doi: 10.1007/s10653-009-9272-3. Epub 2009 Jun 25.
The mineral elements present in brown rice play an important physiological role in global human health. We investigated genotypic variation of eight of these elements (P, K, Ca, Mg, Fe, Zn, Cu, and Mn) in 11 different grades of brown rice on the basis of the number and distance coefficients of 282 alleles for 20 simple sequence repeat (SSR) markers. Six-hundred and twenty-eight landraces from the same field in Yunnan Province, one of the largest centers of genetic diversity of rice (Oryza sativa L.) in the world, formed our core collection. The mean concentrations (mg kg(-1)) of the eight elements in brown rice for these landraces were P (3,480) > K (2,540) > Mg (1,480) > Ca (157) > Zn (32.8) > Fe (32.0) > Cu (13.6) > Mn (13.2). Mean P concentrations in brown rice were 6.56 times total soil P, so the grains are important in tissue storage of P, but total soil K is 7.82 times mean K concentrations in brown rice. The concentrations of the eight elements in some grades of brown rice, on the basis of the number and distance coefficients of alleles for 20 SSR markers for the landraces, were significantly different (P < 0.05), and further understanding of the relationship between mineral elements and gene diversity is needed. There was large variation in element concentrations in brown rice, ranging from 2,160 to 5,500 mg P kg(-1), from 1,130 to 3,830 mg K kg(-1), from 61.8 to 488 mg Ca kg(-1), from 864 to 2,020 mg Mg kg(-1), from 0.40 to 147 mg Fe kg(-1), from 15.1 to 124 mg Zn kg(-1), from 0.10 to 59.1 mg Cu kg(-1), and from 6.7 to 26.6 mg Mn kg(-1). Therefore, germplasm evaluations for Ca, Fe, and Zn concentrations in rice grains have detected up to sevenfold genotypic differences, suggesting that selection for high levels of Ca, Fe, and Zn in breeding for mass production is a feasible approach. Increasing the concentrations of Ca, Fe, and Zn in rice grains will help alleviate chronic Ca, Zn, and Fe deficiencies in many areas of the world.
糙米中存在的矿物质元素对全球人类健康起着重要的生理作用。我们基于 20 个简单序列重复(SSR)标记的 282 个等位基因的数量和距离系数,研究了 11 个不同等级糙米中 8 种元素(P、K、Ca、Mg、Fe、Zn、Cu 和 Mn)的基因型变异。这些来自云南省同一农田的 628 个地方品种,是世界上最大的水稻(Oryza sativa L.)遗传多样性中心之一,构成了我们的核心收集。这些地方品种糙米中 8 种元素的平均浓度(mg kg(-1))为 P(3480)> K(2540)> Mg(1480)> Ca(157)> Zn(32.8)> Fe(32.0)> Cu(13.6)> Mn(13.2)。糙米中 P 浓度是总土壤 P 的 6.56 倍,因此谷物在 P 的组织储存中很重要,但总土壤 K 是糙米中平均 K 浓度的 7.82 倍。基于地方品种 20 个 SSR 标记的等位基因数量和距离系数,一些等级的糙米中 8 种元素的浓度存在显著差异(P < 0.05),需要进一步了解矿物质元素与基因多样性之间的关系。糙米中元素浓度差异很大,范围从 2160 到 5500mg P kg(-1),从 1130 到 3830mg K kg(-1),从 61.8 到 488mg Ca kg(-1),从 864 到 2020mg Mg kg(-1),从 0.40 到 147mg Fe kg(-1),从 15.1 到 124mg Zn kg(-1),从 0.10 到 59.1mg Cu kg(-1),从 6.7 到 26.6mg Mn kg(-1)。因此,对水稻籽粒中 Ca、Fe 和 Zn 浓度的种质评价检测到高达 7 倍的基因型差异,这表明在大规模生产中选择高 Ca、Fe 和 Zn 水平是一种可行的方法。增加水稻籽粒中 Ca、Fe 和 Zn 的浓度将有助于缓解世界许多地区的慢性 Ca、Zn 和 Fe 缺乏症。