Suppr超能文献

基于自回归模型的行为者和观察者中与反应错误相关的事件相关电位分类。

Classification of event-related potentials associated with response errors in actors and observers based on autoregressive modeling.

作者信息

Vasios Christos E, Ventouras Errikos M, Matsopoulos George K, Karanasiou Irene, Asvestas Pantelis, Uzunoglu Nikolaos K, Van Schie Hein T, de Bruijn Ellen R A

机构信息

Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece.

出版信息

Open Med Inform J. 2009 May 15;3:32-43. doi: 10.2174/1874431100903010032.

Abstract

Event-Related Potentials (ERPs) provide non-invasive measurements of the electrical activity on the scalp related to the processing of stimuli and preparation of responses by the brain. In this paper an ERP-signal classification method is proposed for discriminating between ERPs of correct and incorrect responses of actors and of observers seeing an actor making such responses. The classification method targeted signals containing error-related negativity (ERN) and error positivity (Pe) components, which are typically associated with error processing in the human brain. Feature extraction consisted of Multivariate Autoregressive modeling combined with the Simulated Annealing technique. The resulting information was subsequently classified by means of an Artificial Neural Network (ANN) using back-propagation algorithm under the "leave-one-out cross-validation" scenario and the Fuzzy C-Means (FCM) algorithm. The ANN consisted of a multi-layer perceptron (MLP). The approach yielded classification rates of up to 85%, both for the actors' correct and incorrect responses and the corresponding ERPs of the observers. The electrodes needed for such classifications were situated mainly at central and frontal areas. Results provide indications that the classification of the ERN is achievable. Furthermore, the availability of the Pe signals, in addition to the ERN, improves the classification, and this is more pronounced for observers' signals. The proposed ERP-signal classification method provides a promising tool to study error detection and observational-learning mechanisms in performance monitoring and joint-action research, in both healthy and patient populations.

摘要

事件相关电位(ERPs)提供了与大脑对刺激的处理和反应准备相关的头皮电活动的非侵入性测量。本文提出了一种ERP信号分类方法,用于区分演员正确和错误反应的ERP以及观察到演员做出此类反应的观察者的ERP。该分类方法针对包含错误相关负波(ERN)和错误正波(Pe)成分的信号,这些成分通常与人类大脑中的错误处理相关。特征提取包括多元自回归建模与模拟退火技术相结合。随后,在“留一法交叉验证”场景下,使用反向传播算法的人工神经网络(ANN)和模糊C均值(FCM)算法对所得信息进行分类。ANN由多层感知器(MLP)组成。该方法对演员的正确和错误反应以及观察者相应的ERP的分类准确率高达85%。此类分类所需的电极主要位于中央和额叶区域。结果表明ERN的分类是可行的。此外,除了ERN之外,Pe信号的可用性提高了分类效果,这在观察者的信号中更为明显。所提出的ERP信号分类方法为研究健康人群和患者群体在绩效监测和联合行动研究中的错误检测和观察学习机制提供了一个有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/442d/2705112/9bcf571906a9/TOMINFOJ-3-32_F3.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验