Suppr超能文献

使用反应性聚合物涂层促进聚(ε-己内酯)支架的基因递送。

The use of reactive polymer coatings to facilitate gene delivery from poly (epsilon-caprolactone) scaffolds.

作者信息

Hu Wei-Wen, Elkasabi Yaseen, Chen Hsien-Yeh, Zhang Ying, Lahann Joerg, Hollister Scott J, Krebsbach Paul H

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Biomaterials. 2009 Oct;30(29):5785-92. doi: 10.1016/j.biomaterials.2009.06.041. Epub 2009 Jul 12.

Abstract

To functionalize biomaterials for bioconjugation, a chemical vapor deposition (CVD) polymerization technique was utilized to modify material surfaces. Poly [(4-amino-p-xylylene)-co-(p-xylylene)] (PPX-NH(2)) was deposited on inert polycaprolactone (PCL) surfaces to provide a reactive amine layer on the substrate surfaces. The biocompatibility of PPX-NH(2) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and lactate dehydrogenase (LDH) assays. The results demonstrated that cells continuously proliferated on CVD treated PCL surfaces with high survival rates. Biotin was conjugated on modified PCL surfaces to immobilize avidin for binding of biotinylated adenovirus. Scanning electron microscopy (SEM) examination illustrated that adenoviruses were evenly bound on both 2-D films and 3-D scaffolds, suggesting CVD was capable of modifying various substrates with different geometries. Using a wax masking technique, the biotin conjugation was controlled to immobilize avidin on specific sites. Due to the virus binding specificity on CVD-modified surfaces, cell transduction was restricted to the pattern of immobilized virus on biomaterials, by which transduced and non-transduced cells were controlled in different regions with a distinct interface. Because CVD was functional in different hierarchies, this surface modification should be able to custom-tailor bioconjugation for different applications.

摘要

为了使生物材料功能化以进行生物共轭,采用化学气相沉积(CVD)聚合技术对材料表面进行改性。聚[(4-氨基对二甲苯撑)-共-(对二甲苯撑)](PPX-NH(2))沉积在惰性聚己内酯(PCL)表面,以在基底表面提供反应性胺层。通过3-(4,5-二甲基噻唑-2-基)-5-(3-羧甲氧基苯基)-2-(4-磺基苯基)-2H-四唑(MTS)和乳酸脱氢酶(LDH)测定评估PPX-NH(2)的生物相容性。结果表明,细胞在经CVD处理的PCL表面上持续增殖,存活率很高。生物素共轭在改性PCL表面上,以固定抗生物素蛋白用于结合生物素化腺病毒。扫描电子显微镜(SEM)检查表明,腺病毒均匀地结合在二维薄膜和三维支架上,表明CVD能够修饰具有不同几何形状的各种基底。使用蜡掩膜技术,控制生物素共轭以将抗生物素蛋白固定在特定部位。由于病毒在CVD改性表面上的结合特异性,细胞转导被限制在生物材料上固定病毒的模式,通过这种方式,转导和未转导的细胞在不同区域以明显的界面得到控制。由于CVD在不同层次上起作用,这种表面改性应该能够为不同应用定制生物共轭。

相似文献

1
The use of reactive polymer coatings to facilitate gene delivery from poly (epsilon-caprolactone) scaffolds.
Biomaterials. 2009 Oct;30(29):5785-92. doi: 10.1016/j.biomaterials.2009.06.041. Epub 2009 Jul 12.
2
The effects of Runx2 immobilization on poly (epsilon-caprolactone) on osteoblast differentiation of bone marrow stromal cells in vitro.
Biomaterials. 2010 Apr;31(12):3231-6. doi: 10.1016/j.biomaterials.2010.01.029. Epub 2010 Feb 2.
3
Digoxigenin modification of adenovirus to spatially control gene delivery from chitosan surfaces.
J Control Release. 2009 May 5;135(3):250-8. doi: 10.1016/j.jconrel.2009.01.020. Epub 2009 Feb 5.
6
Poly(amido amine)-based multilayered thin films on 2D and 3D supports for surface-mediated cell transfection.
J Control Release. 2015 May 10;205:181-9. doi: 10.1016/j.jconrel.2015.01.034. Epub 2015 Jan 28.
8
Cellular transduction gradients via vapor-deposited polymer coatings.
Biomaterials. 2011 Mar;32(7):1809-15. doi: 10.1016/j.biomaterials.2010.10.046. Epub 2010 Dec 22.

引用本文的文献

1
BMP Gene-Immobilization to Dental Implants Enhances Bone Regeneration.
Adv Mater Interfaces. 2022 Aug 3;9(22). doi: 10.1002/admi.202200531. Epub 2022 Jun 25.
2
Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies.
Molecules. 2020 Oct 19;25(20):4802. doi: 10.3390/molecules25204802.
3
Biomedical Applications of Biodegradable Polyesters.
Polymers (Basel). 2016 Jan 16;8(1):20. doi: 10.3390/polym8010020.
4
A Synthetic Gene Circuit for Self-Regulating Delivery of Biologic Drugs in Engineered Tissues.
Tissue Eng Part A. 2019 May;25(9-10):809-820. doi: 10.1089/ten.TEA.2019.0027.
5
Micropatterned Scaffolds with Immobilized Growth Factor Genes Regenerate Bone and Periodontal Ligament-Like Tissues.
Adv Healthc Mater. 2018 Nov;7(22):e1800750. doi: 10.1002/adhm.201800750. Epub 2018 Oct 19.
6
7
Multigrowth Factor Delivery via Immobilization of Gene Therapy Vectors.
Adv Mater. 2016 Apr;28(16):3145-51. doi: 10.1002/adma.201600027. Epub 2016 Feb 25.
9
Design control for clinical translation of 3D printed modular scaffolds.
Ann Biomed Eng. 2015 Mar;43(3):774-86. doi: 10.1007/s10439-015-1270-2. Epub 2015 Feb 10.
10
Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):E798-806. doi: 10.1073/pnas.1321744111. Epub 2014 Feb 18.

本文引用的文献

1
Digoxigenin modification of adenovirus to spatially control gene delivery from chitosan surfaces.
J Control Release. 2009 May 5;135(3):250-8. doi: 10.1016/j.jconrel.2009.01.020. Epub 2009 Feb 5.
2
Engineering graded tissue interfaces.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12170-5. doi: 10.1073/pnas.0801988105. Epub 2008 Aug 21.
3
Development of adenovirus immobilization strategies for in situ gene therapy.
J Gene Med. 2008 Oct;10(10):1102-12. doi: 10.1002/jgm.1233.
5
Localized viral vector delivery to enhance in situ regenerative gene therapy.
Gene Ther. 2007 Jun;14(11):891-901. doi: 10.1038/sj.gt.3302940. Epub 2007 Mar 8.
6
Characterization of EGF coupling to aminated silicone rubber surfaces.
Biotechnol Bioeng. 2006 Dec 20;95(6):1158-66. doi: 10.1002/bit.21083.
8
Surface modification of confined microgeometries via vapor-deposited polymer coatings.
J Am Chem Soc. 2006 Jan 11;128(1):374-80. doi: 10.1021/ja057082h.
9
Biological approaches to bone regeneration by gene therapy.
J Dent Res. 2005 Dec;84(12):1093-103. doi: 10.1177/154405910508401204.
10
Gene delivery from polymer scaffolds for tissue engineering.
Expert Rev Med Devices. 2004 Sep;1(1):127-38. doi: 10.1586/17434440.1.1.127.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验