Suppr超能文献

从肽聚糖中回收N-乙酰葡糖胺的另一条途径涉及大肠杆菌中的N-乙酰葡糖胺磷酸转移酶系统。

An alternative route for recycling of N-acetylglucosamine from peptidoglycan involves the N-acetylglucosamine phosphotransferase system in Escherichia coli.

作者信息

Plumbridge Jacqueline

机构信息

Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, 75005 Paris, France.

出版信息

J Bacteriol. 2009 Sep;191(18):5641-7. doi: 10.1128/JB.00448-09. Epub 2009 Jul 17.

Abstract

A set of enzymes dedicated to recycling of the amino sugar components of peptidoglycan has previously been identified in Escherichia coli. The complete pathway includes the nagA-encoded enzyme, N-acetylglucosamine-6-phosphate (GlcNAc6P) deacetylase, of the catabolic pathway for use of N-acetylglucosamine (GlcNAc). Mutations in nagA result in accumulation of millimolar concentrations of GlcNAc6P, presumably by preventing peptidoglycan recycling. Mutations in the genes encoding the key enzymes upstream of nagA in the dedicated recycling pathway (ampG, nagZ, nagK, murQ, and anmK), which were expected to interrupt the recycling process, reduced but did not eliminate accumulation of GlcNAc6P. A mutation in the nagE gene of the GlcNAc phosphotransferase system (PTS) was found to reduce by 50% the amount of GlcNAc6P which accumulated in a nagA strain and, together with mutations in the dedicated recycling pathway, eliminated all the GlcNAc6P accumulation. This shows that the nagE-encoded PTS transporter makes an important contribution to the recycling of peptidoglycan. The manXYZ-encoded PTS transporter makes a minor contribution to the formation of cytoplasmic GlcNAc6P but appears to have a more important role in secretion of GlcNAc and/or GlcNAc6P from the cytoplasm.

摘要

先前已在大肠杆菌中鉴定出一组专门用于回收肽聚糖氨基糖成分的酶。完整的途径包括参与利用N - 乙酰葡糖胺(GlcNAc)分解代谢途径的由nagA编码的酶,即N - 乙酰葡糖胺 - 6 - 磷酸(GlcNAc6P)脱乙酰酶。nagA中的突变导致毫摩尔浓度的GlcNAc6P积累,推测是通过阻止肽聚糖的回收。在专门回收途径中nagA上游编码关键酶的基因(ampG、nagZ、nagK、murQ和anmK)中的突变,预期会中断回收过程,减少但并未消除GlcNAc6P的积累。发现GlcNAc磷酸转移酶系统(PTS)的nagE基因中的突变可使在nagA菌株中积累的GlcNAc6P量减少50%,并且与专门回收途径中的突变一起,消除了所有GlcNAc6P的积累。这表明由nagE编码的PTS转运蛋白对肽聚糖的回收做出了重要贡献。由manXYZ编码的PTS转运蛋白对细胞质中GlcNAc6P的形成贡献较小,但似乎在从细胞质中分泌GlcNAc和/或GlcNAc6P方面具有更重要的作用。

相似文献

2
Allosteric regulation of glucosamine-6-phosphate deaminase (NagB) and growth of Escherichia coli on glucosamine.
J Bacteriol. 2009 Oct;191(20):6401-7. doi: 10.1128/JB.00633-09. Epub 2009 Aug 21.
6
Structural and functional determination of homologs of the -acetylglucosamine-6-phosphate deacetylase (NagA).
J Biol Chem. 2018 Jun 22;293(25):9770-9783. doi: 10.1074/jbc.RA118.002597. Epub 2018 May 4.
7
The N-acetyl-D-glucosamine kinase of Escherichia coli and its role in murein recycling.
J Bacteriol. 2004 Nov;186(21):7273-9. doi: 10.1128/JB.186.21.7273-7279.2004.
10
Dual inducer signal recognition by an Mlc homologue.
Microbiology (Reading). 2015 Aug;161(8):1694-1706. doi: 10.1099/mic.0.000126.

引用本文的文献

1
Deficiency in peptidoglycan recycling promotes β-lactam sensitivity in .
mBio. 2025 Apr 9;16(4):e0297524. doi: 10.1128/mbio.02975-24. Epub 2025 Mar 11.
2
Muropeptides and muropeptide transporters impact on host immune response.
Gut Microbes. 2024 Jan-Dec;16(1):2418412. doi: 10.1080/19490976.2024.2418412. Epub 2024 Oct 22.
3
Systems-wide analysis of the ROK-family regulatory gene and its role in the control of glucosamine toxicity in .
Appl Environ Microbiol. 2023 Dec 21;89(12):e0167423. doi: 10.1128/aem.01674-23. Epub 2023 Nov 20.
6
Molecular basis for cell-wall recycling regulation by transcriptional repressor MurR in Escherichia coli.
Nucleic Acids Res. 2022 Jun 10;50(10):5948-5960. doi: 10.1093/nar/gkac442.
7
Identification of Bacterial Drug-Resistant Cells by the Convolutional Neural Network in Transmission Electron Microscope Images.
Front Microbiol. 2022 Mar 15;13:839718. doi: 10.3389/fmicb.2022.839718. eCollection 2022.
8
GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway.
Elife. 2022 Mar 1;11:e69223. doi: 10.7554/eLife.69223.
10
Molecular Fingerprints for a Novel Enzyme Family in with Glucosamine Kinase Activity.
mBio. 2019 May 14;10(3):e00239-19. doi: 10.1128/mBio.00239-19.

本文引用的文献

1
How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan).
Microbiol Mol Biol Rev. 2008 Jun;72(2):211-27, table of contents. doi: 10.1128/MMBR.00027-07.
2
Highlights of glucosamine-6P synthase catalysis.
Arch Biochem Biophys. 2008 Jun 15;474(2):302-17. doi: 10.1016/j.abb.2008.01.026. Epub 2008 Feb 6.
3
An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli.
J Bacteriol. 2007 Aug;189(15):5634-41. doi: 10.1128/JB.00446-07. Epub 2007 May 25.
4
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031. doi: 10.1128/MMBR.00024-06.
5
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
7
Scission of the lactyl ether bond of N-acetylmuramic acid by Escherichia coli "etherase".
J Biol Chem. 2005 Aug 26;280(34):30100-6. doi: 10.1074/jbc.M502208200. Epub 2005 Jun 27.
9
The N-acetyl-D-glucosamine kinase of Escherichia coli and its role in murein recycling.
J Bacteriol. 2004 Nov;186(21):7273-9. doi: 10.1128/JB.186.21.7273-7279.2004.
10
Identification of a phosphotransferase system of Escherichia coli required for growth on N-acetylmuramic acid.
J Bacteriol. 2004 Apr;186(8):2385-92. doi: 10.1128/JB.186.8.2385-2392.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验