Zhang Tongli, Brazhnik Paul, Tyson John J
Department of Biological Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
Biophys J. 2009 Jul 22;97(2):415-34. doi: 10.1016/j.bpj.2009.04.053.
Multicellular organisms shape development and remove aberrant cells by programmed cell death ("apoptosis"). Because defective cell death (too little or too much) is implicated in various diseases (like cancer and autoimmunity), understanding how apoptosis is regulated is an important goal of molecular cell biologists. To this end, we propose a mathematical model of the intrinsic apoptotic pathway that captures three key dynamical features: a signal threshold to elicit cell death, irreversible commitment to the response, and a time delay that is inversely proportional to signal strength. Subdividing the intrinsic pathway into three modules (initiator, amplifier, executioner), we use computer simulation and bifurcation theory to attribute signal threshold and time delay to positive feedback in the initiator module and irreversible commitment to positive feedback in the executioner module. The model accounts for the behavior of mutants deficient in various genes and is used to design experiments that would test its basic assumptions. Finally, we apply the model to study p53-induced cellular responses to DNA damage. Cells first undergo cell cycle arrest and DNA repair, and then apoptosis if the damage is beyond repair. The model ascribes this cell-fate transition to a transformation of p53 from "helper" to "killer" forms.
多细胞生物通过程序性细胞死亡(“凋亡”)来塑造发育过程并清除异常细胞。由于细胞死亡缺陷(过少或过多)与多种疾病(如癌症和自身免疫性疾病)有关,因此了解凋亡如何被调控是分子细胞生物学家的一个重要目标。为此,我们提出了一个内在凋亡途径的数学模型,该模型捕捉了三个关键的动力学特征:引发细胞死亡的信号阈值、对反应的不可逆承诺以及与信号强度成反比的时间延迟。将内在途径细分为三个模块(启动器、放大器、执行者),我们使用计算机模拟和分岔理论将信号阈值和时间延迟归因于启动器模块中的正反馈以及执行者模块中对正反馈的不可逆承诺。该模型解释了各种基因缺陷突变体的行为,并用于设计可检验其基本假设的实验。最后,我们应用该模型来研究p53诱导的细胞对DNA损伤的反应。细胞首先经历细胞周期停滞和DNA修复,如果损伤无法修复则随后发生凋亡。该模型将这种细胞命运转变归因于p53从“辅助”形式向“杀手”形式的转变。