Suppr超能文献

一种系统生物学方法,用于发现转移过程中信号通路的调控异常。

A systems biology approach to discovering pathway signaling dysregulation in metastasis.

机构信息

Department of Oncology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.

Hormel Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Austin, MN, 55912, USA.

出版信息

Cancer Metastasis Rev. 2020 Sep;39(3):903-918. doi: 10.1007/s10555-020-09921-7. Epub 2020 Aug 10.

Abstract

Total metastatic burden is the primary cause of death for many cancer patients. While the process of metastasis has been studied widely, much remains to be understood. Moreover, few agents have been developed that specifically target the major steps of the metastatic cascade. Many individual genes and pathways have been implicated in metastasis but a holistic view of how these interact and cooperate to regulate and execute the process remains somewhat rudimentary. It is unclear whether all of the signaling features that regulate and execute metastasis are yet fully understood. Novel features of a complex system such as metastasis can often be discovered by taking a systems-based approach. We introduce the concepts of systems modeling and define some of the central challenges facing the application of a multidisciplinary systems-based approach to understanding metastasis and finding actionable targets therein. These challenges include appreciating the unique properties of the high-dimensional omics data often used for modeling, limitations in knowledge of the system (metastasis), tumor heterogeneity and sampling bias, and some of the issues key to understanding critical features of molecular signaling in the context of metastasis. We also provide a brief introduction to integrative modeling that focuses on both the nodes and edges of molecular signaling networks. Finally, we offer some observations on future directions as they relate to developing a systems-based model of the metastatic cascade.

摘要

总的转移负担是许多癌症患者死亡的主要原因。虽然转移过程已经被广泛研究,但仍有许多问题需要了解。此外,开发出专门针对转移级联主要步骤的药物很少。许多单个基因和途径都与转移有关,但对于这些基因和途径如何相互作用和合作来调节和执行该过程的整体观点仍然有些初步。目前尚不清楚是否已经完全了解调节和执行转移的所有信号特征。复杂系统(如转移)的新特征通常可以通过系统方法来发现。我们介绍了系统建模的概念,并定义了应用多学科系统方法来理解转移并在其中找到可操作的靶点所面临的一些核心挑战。这些挑战包括理解通常用于建模的高维组学数据的独特性质、对系统(转移)的知识有限、肿瘤异质性和采样偏差,以及理解转移背景下分子信号关键特征的一些关键问题。我们还简要介绍了关注分子信号网络节点和边缘的综合建模。最后,我们就与开发转移级联系统模型相关的未来方向提出了一些观察意见。

相似文献

2
Introduction: Cancer Gene Networks.引言:癌症基因网络
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
3
Systems Biology of Cancer Metastasis.癌症转移的系统生物学。
Cell Syst. 2019 Aug 28;9(2):109-127. doi: 10.1016/j.cels.2019.07.003.
5
Computational systems biology in cancer brain metastasis.癌症脑转移中的计算系统生物学
Front Biosci (Schol Ed). 2016 Jan 1;8(1):169-86. doi: 10.2741/s456.
7
Bioinformatics and systems biology of cancers.癌症的生物信息学和系统生物学。
Prog Mol Biol Transl Sci. 2010;95:159-91. doi: 10.1016/B978-0-12-385071-3.00007-1.

引用本文的文献

3
Types of Cell Death from a Molecular Perspective.从分子角度看细胞死亡的类型
Biology (Basel). 2023 Nov 13;12(11):1426. doi: 10.3390/biology12111426.
4
Mathematical Models of Death Signaling Networks.死亡信号网络的数学模型
Entropy (Basel). 2022 Oct 1;24(10):1402. doi: 10.3390/e24101402.
6
Introduction: Cancer Systems and Integrative Biology.简介:癌症系统与综合生物学。
Methods Mol Biol. 2023;2660:1-11. doi: 10.1007/978-1-0716-3163-8_1.

本文引用的文献

2
A Dynamical Paradigm for Molecular Cell Biology.分子细胞生物学的动力学范式。
Trends Cell Biol. 2020 Jul;30(7):504-515. doi: 10.1016/j.tcb.2020.04.002. Epub 2020 Apr 30.
4
7
An analysis of genetic heterogeneity in untreated cancers.未治疗癌症中的遗传异质性分析。
Nat Rev Cancer. 2019 Nov;19(11):639-650. doi: 10.1038/s41568-019-0185-x. Epub 2019 Aug 27.
8
Genomic characterization of metastatic breast cancers.转移性乳腺癌的基因组特征分析。
Nature. 2019 May;569(7757):560-564. doi: 10.1038/s41586-019-1056-z. Epub 2019 May 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验