Suppr超能文献

基于体素的形态计量学和自动叶体积测量:空间尺度和统计校正之间的权衡。

Voxel-based morphometry and automated lobar volumetry: the trade-off between spatial scale and statistical correction.

机构信息

Image Sciences Institute, University Medical Centre Utrecht, Utrecht, The Netherlands.

出版信息

Neuroimage. 2010 Jan 1;49(1):587-96. doi: 10.1016/j.neuroimage.2009.07.018. Epub 2009 Jul 18.

Abstract

Voxel-based morphometry (VBM) and automated lobar region of interest (ROI) volumetry are comprehensive and fast methods to detect differences in overall brain anatomy on magnetic resonance images. However, VBM and automated lobar ROI volumetry have detected dissimilar gray matter differences within identical image sets in our own experience and in previous reports. To gain more insight into how diverging results arise and to attempt to establish whether one method is superior to the other, we investigated how differences in spatial scale and in the need to statistically correct for multiple spatial comparisons influence the relative sensitivity of either technique to group differences in gray matter volumes. We assessed the performance of both techniques on a small dataset containing simulated gray matter deficits and additionally on a dataset of 22q11-deletion syndrome patients with schizophrenia (22q11DS-SZ) vs. matched controls. VBM was more sensitive to simulated focal deficits compared to automated ROI volumetry, and could detect global cortical deficits equally well. Moreover, theoretical calculations of VBM and ROI detection sensitivities to focal deficits showed that at increasing ROI size, ROI volumetry suffers more from loss in sensitivity than VBM. Furthermore, VBM and automated ROI found corresponding GM deficits in 22q11DS-SZ patients, except in the parietal lobe. Here, automated lobar ROI volumetry found a significant deficit only after a smaller sub-region of interest was employed. Thus, sensitivity to focal differences is impaired relatively more by averaging over larger volumes in automated ROI methods than by the correction for multiple comparisons in VBM. These findings indicate that VBM is to be preferred over automated lobar-scale ROI volumetry for assessing gray matter volume differences between groups.

摘要

体素基形态测量学 (VBM) 和自动脑叶 ROI 容积测量是在磁共振图像上检测整体大脑解剖差异的全面且快速的方法。然而,在我们自己的经验和以前的报告中,VBM 和自动脑叶 ROI 容积测量已经检测到了相同图像集中相似的灰质差异。为了更深入地了解分歧结果的产生原因,并尝试确定一种方法是否优于另一种方法,我们研究了空间尺度的差异以及是否需要对多个空间比较进行统计校正,如何影响这两种技术对灰质体积组间差异的相对敏感性。我们评估了这两种技术在一个包含模拟灰质缺陷的小数据集上的性能,此外还在一个 22q11 缺失综合征伴精神分裂症患者(22q11DS-SZ)与匹配对照的数据集上评估了这两种技术的性能。与自动 ROI 容积测量相比,VBM 对模拟局灶性缺陷更敏感,并且可以同样好地检测到全皮质缺陷。此外,对 VBM 和 ROI 检测局灶性缺陷敏感性的理论计算表明,随着 ROI 大小的增加,ROI 容积测量的敏感性损失比 VBM 更严重。此外,VBM 和自动 ROI 在 22q11DS-SZ 患者中发现了相应的 GM 缺陷,除了在顶叶。在这里,仅在使用较小的感兴趣区域亚区后,自动脑叶 ROI 容积测量才发现了显著的缺陷。因此,与 VBM 相比,在自动 ROI 方法中对更大体积进行平均会相对更多地损害对局灶性差异的敏感性,而在 VBM 中校正多个比较会相对更多地损害对局灶性差异的敏感性。这些发现表明,在评估组间灰质体积差异时,VBM 优于自动脑叶尺度 ROI 容积测量。

相似文献

引用本文的文献

9
Quantitative relaxometry of the brain.大脑的定量弛豫测量法。
Top Magn Reson Imaging. 2010 Apr;21(2):101-13. doi: 10.1097/RMR.0b013e31821e56d8.

本文引用的文献

1
Age-related gray matter volume changes in the brain during non-elderly adulthood.非老年成年期大脑与年龄相关的灰质体积变化。
Neurobiol Aging. 2011 Feb;32(2):354-68. doi: 10.1016/j.neurobiolaging.2009.02.008. Epub 2009 Mar 12.
3
Gray matter changes in late life depression--a structural MRI analysis.晚年抑郁症中的灰质变化——一项结构磁共振成像分析
Neuropsychopharmacology. 2008 Oct;33(11):2566-72. doi: 10.1038/sj.npp.1301655. Epub 2007 Dec 12.
4
Cerebral white matter deficiencies in pedophilic men.恋童癖男性的脑白质缺陷
J Psychiatr Res. 2008 Feb;42(3):167-83. doi: 10.1016/j.jpsychires.2007.10.013. Epub 2007 Nov 26.
9
Unified segmentation.统一分割
Neuroimage. 2005 Jul 1;26(3):839-51. doi: 10.1016/j.neuroimage.2005.02.018. Epub 2005 Apr 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验