Jeong Shinwu, Liang Gangning, Sharma Shikhar, Lin Joy C, Choi Si Ho, Han Han, Yoo Christine B, Egger Gerda, Yang Allen S, Jones Peter A
Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, NOR 8302L, 9181, Los Angeles, CA 90089-9181, USA.
Mol Cell Biol. 2009 Oct;29(19):5366-76. doi: 10.1128/MCB.00484-09. Epub 2009 Jul 20.
Proper DNA methylation patterns are essential for mammalian development and differentiation. DNA methyltransferases (DNMTs) primarily establish and maintain global DNA methylation patterns; however, the molecular mechanisms for the generation and inheritance of methylation patterns are still poorly understood. We used sucrose density gradients of nucleosomes prepared by partial and maximum micrococcal nuclease digestion, coupled with Western blot analysis to probe for the interactions between DNMTs and native nucleosomes. This method allows for analysis of the in vivo interactions between the chromatin modification enzymes and their actual nucleosomal substrates in the native state. We show that little free DNA methyltransferase 3A and 3B (DNMT3A/3B) exist in the nucleus and that almost all of the cellular contents of DNMT3A/3B, but not DNMT1, are strongly anchored to a subset of nucleosomes. This binding of DNMT3A/3B does not require the presence of other well-known chromatin-modifying enzymes or proteins, such as proliferating cell nuclear antigen, heterochromatin protein 1, methyl-CpG binding protein 2, Enhancer of Zeste homolog 2, histone deacetylase 1, and UHRF1, but it does require an intact nucleosomal structure. We also show that nucleosomes containing methylated SINE and LINE elements and CpG islands are the main sites of DNMT3A/3B binding. These data suggest that inheritance of DNA methylation requires cues from the chromatin component in addition to hemimethylation.
适当的DNA甲基化模式对于哺乳动物的发育和分化至关重要。DNA甲基转移酶(DNMTs)主要建立和维持整体DNA甲基化模式;然而,甲基化模式的产生和遗传的分子机制仍知之甚少。我们使用了通过部分和最大程度的微球菌核酸酶消化制备的核小体蔗糖密度梯度,并结合蛋白质免疫印迹分析来探究DNMTs与天然核小体之间的相互作用。该方法能够分析染色质修饰酶与其天然状态下实际的核小体底物之间的体内相互作用。我们发现细胞核中几乎不存在游离的DNA甲基转移酶3A和3B(DNMT3A/3B),并且DNMT3A/3B的几乎所有细胞成分,而非DNMT1,都强烈锚定在一部分核小体上。DNMT3A/3B的这种结合不需要其他知名的染色质修饰酶或蛋白质的存在,如增殖细胞核抗原、异染色质蛋白1、甲基化CpG结合蛋白2、Zeste同源物2增强子、组蛋白去乙酰化酶1和泛素样含PHD和指环结构域蛋白1(UHRF1),但确实需要完整的核小体结构。我们还表明,含有甲基化短散在核元件(SINE)、长散在核元件(LINE)和CpG岛的核小体是DNMT3A/3B结合的主要位点。这些数据表明,除了半甲基化之外,DNA甲基化的遗传还需要来自染色质成分的线索。