Department of Ecology and Evolutionary Biology, Interdepartmental Program in Bioinformatics, University of California Los Angeles, Los Angeles, California 90095, USA.
Evolution. 2009 Nov;63(11):2914-25. doi: 10.1111/j.1558-5646.2009.00775.x. Epub 2009 Jul 16.
Estimating dispersal distances from population genetic data provides an important alternative to logistically taxing methods for directly observing dispersal. Although methods for estimating dispersal rates between a modest number of discrete demes are well developed, methods of inference applicable to "isolation-by-distance" models are much less established. Here, we present a method for estimating rhosigma(2), the product of population density (rho) and the variance of the dispersal displacement distribution (sigma(2)). The method is based on the assumption that low-frequency alleles are identical by descent. Hence, the extent of geographic clustering of such alleles, relative to their frequency in the population, provides information about rhosigma(2). We show that a novel likelihood-based method can infer this composite parameter with a modest bias in a lattice model of isolation-by-distance. For calculating the likelihood, we use an importance sampling approach to average over the unobserved intraallelic genealogies, where the intraallelic genealogies are modeled as a pure birth process. The approach also leads to a likelihood-ratio test of isotropy of dispersal, that is, whether dispersal distances on two axes are different. We test the performance of our methods using simulations of new mutations in a lattice model and illustrate its use with a dataset from Arabidopsis thaliana.
从种群遗传数据估计扩散距离为直接观察扩散提供了一种重要的替代方法,因为这种方法在逻辑上具有挑战性。尽管已经很好地开发了用于估计适度数量离散种群之间扩散率的方法,但适用于“距离隔离”模型的推理方法却远未得到充分确立。在这里,我们提出了一种估计 rhosigma(2)的方法,即种群密度 (rho)和扩散位移分布方差 (sigma(2))的乘积。该方法基于低频等位基因是由血统决定的假设。因此,相对于种群中的频率,此类等位基因的地理聚类程度提供了有关 rhosigma(2)的信息。我们表明,在基于格点的距离隔离模型中,一种新颖的基于似然的方法可以适度偏倚地推断出这种组合参数。为了计算似然,我们使用重要性抽样方法来平均观察不到的等位基因内谱系,其中等位基因内谱系被建模为纯生过程。该方法还导致了对扩散各向同性的似然比检验,即两个轴上的扩散距离是否不同。我们使用格点模型中的新突变模拟来测试我们方法的性能,并使用拟南芥数据集来说明其用途。